11,856 research outputs found
Driver Drowsiness Detection System
In recent years’ driver fatigue is one of the major causes of vehicle accidents in the world. A direct way of measuring driver fatigue is measuring the state of the driver i.e. drowsiness. So it is very important to detect the drowsiness of the driver to save life and property. This project is aimed towards developing a prototype of drowsiness detection system. This system is a real time system which captures image continuously and measures the state of the eye according to the specified algorithm and gives warning if required.
Though there are several methods for measuring the drowsiness but this approach is completely non-intrusive which does not affect the driver in any way, hence giving the exact condition of the driver. For detection of drowsiness the per closure value of eye is considered. So when the closure of eye exceeds a certain amount then the driver is identified to be sleepy. For implementing this system several OpenCv libraries are used including Haar-cascade. The entire system is implemented using Raspberry-Pi
Learning to Estimate Driver Drowsiness from Car Acceleration Sensors using Weakly Labeled Data
This paper addresses the learning task of estimating driver drowsiness from
the signals of car acceleration sensors. Since even drivers themselves cannot
perceive their own drowsiness in a timely manner unless they use burdensome
invasive sensors, obtaining labeled training data for each timestamp is not a
realistic goal. To deal with this difficulty, we formulate the task as a weakly
supervised learning. We only need to add labels for each complete trip, not for
every timestamp independently. By assuming that some aspects of driver
drowsiness increase over time due to tiredness, we formulate an algorithm that
can learn from such weakly labeled data. We derive a scalable stochastic
optimization method as a way of implementing the algorithm. Numerical
experiments on real driving datasets demonstrate the advantages of our
algorithm against baseline methods.Comment: Accepted by ICASSP202
Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm
Driver drowsiness and loss of vigilance are a major cause of road accidents. Monitoring physiological signals while driving provides the possibility of detecting and warning of drowsiness and fatigue. The aim of this paper is to maximize the amount of drowsiness-related information extracted from a set of electroencephalogram (EEG), electrooculogram (EOG), and electrocardiogram (ECG) signals during a simulation driving test. Specifically, we develop an efficient fuzzy mutual-information (MI)- based wavelet packet transform (FMIWPT) feature-extraction method for classifying the driver drowsiness state into one of predefined drowsiness levels. The proposed method estimates the required MI using a novel approach based on fuzzy memberships providing an accurate-information content-estimation measure. The quality of the extracted features was assessed on datasets collected from 31 drivers on a simulation test. The experimental results proved the significance of FMIWPT in extracting features that highly correlate with the different drowsiness levels achieving a classification accuracy of 95%-97% on an average across all subjects. © 2011 IEEE
Statistical validation of physiological indicators for non-invasive and hybrid driver drowsiness detection system
A hybrid system for detecting driver
drowsiness was examined by using piezofilm movement
sensors integrated into the car seat, seat belt and steering
wheel. Statistical associations between increase in the
driver drowsiness and the non-invasive and conventional
physiological indicators were investigated. Statistically
significant associations were established for the analysed
physiological indicators – car seat movement magnitude
and (electroencephalogram) EEG alpha band power
percentage. All of the associastions were physiologically
plausible with increase in probability of drowsiness
associated with increases in the EEG alpha band power
percentage and reduction in the seat movement
magnitude. Adding a non-invasive measure such as seat
movement magnitude to any combination of the EEG
derived physiological predictors always resulted in
improvement of associations. These findings can serve as
a foundation for designing the vehicle-based fatigue
countermeasure device as well as highlight potential
difficulties and limitations of detection algorithm for such
devices
- …
