11,856 research outputs found

    Driver Drowsiness Detection System

    Get PDF
    In recent years’ driver fatigue is one of the major causes of vehicle accidents in the world. A direct way of measuring driver fatigue is measuring the state of the driver i.e. drowsiness. So it is very important to detect the drowsiness of the driver to save life and property. This project is aimed towards developing a prototype of drowsiness detection system. This system is a real time system which captures image continuously and measures the state of the eye according to the specified algorithm and gives warning if required. Though there are several methods for measuring the drowsiness but this approach is completely non-intrusive which does not affect the driver in any way, hence giving the exact condition of the driver. For detection of drowsiness the per closure value of eye is considered. So when the closure of eye exceeds a certain amount then the driver is identified to be sleepy. For implementing this system several OpenCv libraries are used including Haar-cascade. The entire system is implemented using Raspberry-Pi

    Learning to Estimate Driver Drowsiness from Car Acceleration Sensors using Weakly Labeled Data

    Full text link
    This paper addresses the learning task of estimating driver drowsiness from the signals of car acceleration sensors. Since even drivers themselves cannot perceive their own drowsiness in a timely manner unless they use burdensome invasive sensors, obtaining labeled training data for each timestamp is not a realistic goal. To deal with this difficulty, we formulate the task as a weakly supervised learning. We only need to add labels for each complete trip, not for every timestamp independently. By assuming that some aspects of driver drowsiness increase over time due to tiredness, we formulate an algorithm that can learn from such weakly labeled data. We derive a scalable stochastic optimization method as a way of implementing the algorithm. Numerical experiments on real driving datasets demonstrate the advantages of our algorithm against baseline methods.Comment: Accepted by ICASSP202

    Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm

    Full text link
    Driver drowsiness and loss of vigilance are a major cause of road accidents. Monitoring physiological signals while driving provides the possibility of detecting and warning of drowsiness and fatigue. The aim of this paper is to maximize the amount of drowsiness-related information extracted from a set of electroencephalogram (EEG), electrooculogram (EOG), and electrocardiogram (ECG) signals during a simulation driving test. Specifically, we develop an efficient fuzzy mutual-information (MI)- based wavelet packet transform (FMIWPT) feature-extraction method for classifying the driver drowsiness state into one of predefined drowsiness levels. The proposed method estimates the required MI using a novel approach based on fuzzy memberships providing an accurate-information content-estimation measure. The quality of the extracted features was assessed on datasets collected from 31 drivers on a simulation test. The experimental results proved the significance of FMIWPT in extracting features that highly correlate with the different drowsiness levels achieving a classification accuracy of 95%-97% on an average across all subjects. © 2011 IEEE

    Statistical validation of physiological indicators for non-invasive and hybrid driver drowsiness detection system

    Full text link
    A hybrid system for detecting driver drowsiness was examined by using piezofilm movement sensors integrated into the car seat, seat belt and steering wheel. Statistical associations between increase in the driver drowsiness and the non-invasive and conventional physiological indicators were investigated. Statistically significant associations were established for the analysed physiological indicators – car seat movement magnitude and (electroencephalogram) EEG alpha band power percentage. All of the associastions were physiologically plausible with increase in probability of drowsiness associated with increases in the EEG alpha band power percentage and reduction in the seat movement magnitude. Adding a non-invasive measure such as seat movement magnitude to any combination of the EEG derived physiological predictors always resulted in improvement of associations. These findings can serve as a foundation for designing the vehicle-based fatigue countermeasure device as well as highlight potential difficulties and limitations of detection algorithm for such devices
    corecore