1,041,890 research outputs found

    The neutron star inner crust and symmetry energy

    Full text link
    The cell structure of clusters in the inner crust of a cold \beta-equilibrium neutron star is studied within a Thomas Fermi approach and compared with other approaches which include shell effects. Relativistic nuclear models are considered. We conclude that the symmetry energy slope L may have quite dramatic effects on the cell structure if it is very large or small. Rod-like and slab-like pasta clusters have been obtained in all models except one with a large slope L.Comment: 16 pages, 5 figure

    Emergence of the nematic electronic state in FeSe

    Get PDF
    We present a comprehensive study of the evolution of the nematic electronic structure of FeSe using high resolution angle-resolved photoemission spectroscopy (ARPES), quantum oscillations in the normal state and elastoresistance measurements. Our high resolution ARPES allows us to track the Fermi surface deformation from four-fold to two-fold symmetry across the structural transition at ~87 K which is stabilized as a result of the dramatic splitting of bands associated with dxz and dyz character. The low temperature Fermi surface is that a compensated metal consisting of one hole and two electron bands and is fully determined by combining the knowledge from ARPES and quantum oscillations. A manifestation of the nematic state is the significant increase in the nematic susceptibility as approaching the structural transition that we detect from our elastoresistance measurements on FeSe. The dramatic changes in electronic structure cannot be explained by the small lattice effects and, in the absence of magnetic fluctuations above the structural transition, points clearly towards an electronically driven transition in FeSe stabilized by orbital-charge ordering.Comment: Latex, 8 pages, 4 figure

    KOMPARASI STRUKTUR PERTUNJUKAN WAYANG KULIT JAWA DENGAN BALI DALAM LAKON ARJUNA WIWAHA

    Get PDF
    Abstract This research compares and contrasts the structure of Javanese Wayang Kulit (Shadow Puppet) Theatre and th performance of Balinese Shadow Theatre, enacting the same story derived from Arjuna Wiwaha poem. This research is primarily based on our experiences as both dalang practicioner and instructor, interviewing several Javanese and Balinese dalangs, and field research in Surakarta and Bali. Major part of this research analyzes the performance dramatic structure that includes the plot, setting, characterization, theme, and edification. In comparing yhe performance of both types of Wayang shadow theatre there are similarity, diversity, and overlapping structure of the two Wayang theatres

    Structural Phase Transition in the Superconducting Pyrochlore Oxide Cd2Re2O7

    Full text link
    We report a structural phase transition found at Ts = 200 K in a pyrochlore oxide Cd2Re2O7 which shows superconductivity at Tc = 1.0 K. X-ray diffractionexperiments indicate that the phase transition is of the second order, from a high-temperature phase with the ideal cubic pyrochlore structure (space group Fd-3m) to a low-temperature phase with another cubic structure (space group F-43m). It is accompanied by a dramatic change in the resistivity and magnetic susceptibility and thus must induce a significant change in the electronic structure of Cd2Re2O7.Comment: 4 pages, 4figures, proceeding for ISSP

    Light transport in cold atoms: the fate of coherent backscattering in the weak localization regime

    Full text link
    The recent observation of coherent backscattering (CBS) of light by atoms has emphasized the key role of the velocity spread and of the quantum internal structure of the atoms. Firstly, using highly resonant scatterers imposes very low temperatures of the disordered medium in order to keep the full contrast of the CBS interference. This criterion is usually achieved with standard laser cooling techniques. Secondly, a non trivial internal atomic structure leads to a dramatic decrease of the CBS contrast. Experiments with Rubidium atoms (with a non trivial internal structure) and with Strontium (with the simplest possible internal structure) show this behaviour and confirm theoretical calculations

    Orientation-dependent C60 electronic structures revealed by photoemission

    Full text link
    We observe, with angle-resolved photoemission, a dramatic change in the electronic structure of two C60 monolayers, deposited respectively on Ag (111) and (100) substrates, and similarly doped with potassium to half-filling of the C60 lowest unoccupied molecular orbital. The Fermi surface symmetry, the bandwidth, and the curvature of the dispersion at Gamma point are different. Orientations of the C60 molecules on the two substrates are known to be the main structural difference between the two monolayers, and we present new band-structure calculations for some of these orientations. We conclude that orientations play a key role in the electronic structure of fullerides.Comment: 4 pages, 4 figure

    Tax structure, welfare, and the stability of equilibrium in a model of dynamic optimal fiscal policy

    Get PDF
    A demonstration that the assumed structure of taxation can have dramatic effects on economic welfare and on the stability of the steady state in a dynamic general-equilibrium model of optimal fiscal policy. The authors find that household welfare is highest under a structure that includes separate tax rates on labor and capital incomes, double taxation of dividends, and tax-deductible depreciation.Taxation ; Fiscal policy

    Dramatic Changes in the Electronic Structure Upon Transition to the Collapsed Tetragonal Phase in CaFe2As2

    Get PDF
    We use angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to study the electronic structure of CaFe2_2As2_2 in previously unexplored collapsed tetragonal (CT) phase. This unusual phase of the iron arsenic high temperature superconductors was hard to measure as it exists only under pressure. By inducing internal strain, via the post growth, thermal treatment of the single crystals, we were able to stabilize the CT phase at ambient-pressure. We find significant differences in the Fermi surface topology and band dispersion data from the more common orthorhombic-antiferromagnetic or tetragonal-paramagnetic phases, consistent with electronic structure calculations. The top of the hole bands sinks below the Fermi level, which destroys the nesting present in parent phases. The absence of nesting in this phase along with apparent loss of Fe magnetic moment, are now clearly experimentally correlated with the lack of superconductivity in this phase.Comment: 5 pages, 4 figures, accepted in PRB(RC
    corecore