487,335 research outputs found

    MONDO: A neutron tracker for particle therapy secondary emission fluxes measurements

    Get PDF
    A charged particle passing through matter releases a considerable amount of energy at the end of its path. Thus, thanks to the spatial distribution of the deposited energy, particle therapy allows treating tumors with greater accuracy and efficiency than conventional radiotherapy. However, during the treatments, several secondary particles are produced from the interactions between therapeutic beams and human tissues and contribute to the total dose delivered to the patient. Since neutrons can release a significant dose far away from the tumour region, a precise measurement of their flux, production energy and angle distribution is eagerly needed to improve the treatment planning system and to estimate the normal tissue toxicity in the target region and establish if/where there could be the risk of secondary neoplasms. The MONDO (MOnitor for Neutron Dose in hadrOntherapy) project aims at detecting secondary neutrons with high efficiency and good backtracking precision

    Pretreatment of secondary effluents in view of optimal ozone-based AOP removal of trace organic contaminants : bench-scale comparison of efficiency and energy consumption

    Get PDF
    This study compares the performance of several ozone-based advanced oxidation processes (AOPs), in combination with filtration, in terms of trace organic contaminant (TrOC) removal efficiency and energy and cost requirement. It was shown that the hydroxyl radical ((OH)-O-center dot) scavenging rate of the secondary wastewater effluent decreased as a result of an additional pretreatment step, leading to an increase of ozone and (OH)-O-center dot exposures at the same ozone dose. Adding filtration such as sand filtration or granular activated carbon filtration (GACF) as a pretreatment increased the removal efficiency of TrOCs by all tested ozone-based AOPs and reduced the minimum effective ozone dose for TrOC elimination. When the applied ozone dose is more than this minimum effective ozone dose, the elimination of TrOCs can be observed. For example, because of the use of anion resin filtration, 17 alpha-ethinylestradiol elimination contributed by the process of ozone-based AOP increased from 34.6 to 42.1% at an ozone dose of 1.0 g O-3/g dissolved organic carbon. Ozone-based AOPs coupled with filtration as a pretreatment were found to be more cost-efficient than the single AOPs at all ozone dose levels. The energy consumption of ozone-based AOPs was decreased by more than 25% when applying GACF as a pretreatment. In comparison with other filtration techniques, the pretreatment of secondary effluents by GACF before ozonation was proven to be the most cost-effective method for TrOC elimination

    A GPU-based finite-size pencil beam algorithm with 3D-density correction for radiotherapy dose calculation

    Full text link
    Targeting at the development of an accurate and efficient dose calculation engine for online adaptive radiotherapy, we have implemented a finite size pencil beam (FSPB) algorithm with a 3D-density correction method on GPU. This new GPU-based dose engine is built on our previously published ultrafast FSPB computational framework [Gu et al. Phys. Med. Biol. 54 6287-97, 2009]. Dosimetric evaluations against Monte Carlo dose calculations are conducted on 10 IMRT treatment plans (5 head-and-neck cases and 5 lung cases). For all cases, there is improvement with the 3D-density correction over the conventional FSPB algorithm and for most cases the improvement is significant. Regarding the efficiency, because of the appropriate arrangement of memory access and the usage of GPU intrinsic functions, the dose calculation for an IMRT plan can be accomplished well within 1 second (except for one case) with this new GPU-based FSPB algorithm. Compared to the previous GPU-based FSPB algorithm without 3D-density correction, this new algorithm, though slightly sacrificing the computational efficiency (~5-15% lower), has significantly improved the dose calculation accuracy, making it more suitable for online IMRT replanning

    Comparison of established and emerging biodosimetry assays

    Get PDF
    Rapid biodosimetry tools are required to assist with triage in the case of a large-scale radiation incident. Here, we aimed to determine the dose-assessment accuracy of the well-established dicentric chromosome assay (DCA) and cytokinesis-block micronucleus assay (CBMN) in comparison to the emerging γ-H2AX foci and gene expression assays for triage mode biodosimetry and radiation injury assessment. Coded blood samples exposed to 10 X-ray doses (240 kVp, 1 Gy/min) of up to 6.4 Gy were sent to participants for dose estimation. Report times were documented for each laboratory and assay. The mean absolute difference (MAD) of estimated doses relative to the true doses was calculated. We also merged doses into binary dose categories of clinical relevance and examined accuracy, sensitivity and specificity of the assays. Dose estimates were reported by the first laboratories within 0.3-0.4 days of receipt of samples for the γ-H2AX and gene expression assays compared to 2.4 and 4 days for the DCA and CBMN assays, respectively. Irrespective of the assay we found a 2.5-4-fold variation of interlaboratory accuracy per assay and lowest MAD values for the DCA assay (0.16 Gy) followed by CBMN (0.34 Gy), gene expression (0.34 Gy) and γ-H2AX (0.45 Gy) foci assay. Binary categories of dose estimates could be discriminated with equal efficiency for all assays, but at doses ≥1.5 Gy a 10% decrease in efficiency was observed for the foci assay, which was still comparable to the CBMN assay. In conclusion, the DCA has been confirmed as the gold standard biodosimetry method, but in situations where speed and throughput are more important than ultimate accuracy, the emerging rapid molecular assays have the potential to become useful triage tools

    Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport

    Full text link
    Monte Carlo simulation is the most accurate method for absorbed dose calculations in radiotherapy. Its efficiency still requires improvement for routine clinical applications, especially for online adaptive radiotherapy. In this paper, we report our recent development on a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport. We have implemented the Dose Planning Method (DPM) Monte Carlo dose calculation package (Sempau et al, Phys. Med. Biol., 45(2000)2263-2291) on GPU architecture under CUDA platform. The implementation has been tested with respect to the original sequential DPM code on CPU in phantoms with water-lung-water or water-bone-water slab geometry. A 20 MeV mono-energetic electron point source or a 6 MV photon point source is used in our validation. The results demonstrate adequate accuracy of our GPU implementation for both electron and photon beams in radiotherapy energy range. Speed up factors of about 5.0 ~ 6.6 times have been observed, using an NVIDIA Tesla C1060 GPU card against a 2.27GHz Intel Xeon CPU processor.Comment: 13 pages, 3 figures, and 1 table. Paper revised. Figures update

    Fast Monte Carlo Simulation for Patient-specific CT/CBCT Imaging Dose Calculation

    Full text link
    Recently, X-ray imaging dose from computed tomography (CT) or cone beam CT (CBCT) scans has become a serious concern. Patient-specific imaging dose calculation has been proposed for the purpose of dose management. While Monte Carlo (MC) dose calculation can be quite accurate for this purpose, it suffers from low computational efficiency. In response to this problem, we have successfully developed a MC dose calculation package, gCTD, on GPU architecture under the NVIDIA CUDA platform for fast and accurate estimation of the x-ray imaging dose received by a patient during a CT or CBCT scan. Techniques have been developed particularly for the GPU architecture to achieve high computational efficiency. Dose calculations using CBCT scanning geometry in a homogeneous water phantom and a heterogeneous Zubal head phantom have shown good agreement between gCTD and EGSnrc, indicating the accuracy of our code. In terms of improved efficiency, it is found that gCTD attains a speed-up of ~400 times in the homogeneous water phantom and ~76.6 times in the Zubal phantom compared to EGSnrc. As for absolute computation time, imaging dose calculation for the Zubal phantom can be accomplished in ~17 sec with the average relative standard deviation of 0.4%. Though our gCTD code has been developed and tested in the context of CBCT scans, with simple modification of geometry it can be used for assessing imaging dose in CT scans as well.Comment: 18 pages, 7 figures, and 1 tabl
    corecore