2,576,508 research outputs found
String-Dominated Cosmology
If string theory controls physics at the string scale, the dynamics of the
early universe before the GUT era will be governed by the low-energy string
equations of motion. Studying these equations for FRW spacetimes, we find that
depending on the initial conditions when the stringy era starts, and on the
time when it ends, there are a wide variety of qualitatively distinct types of
evolution. We classify these, and present the general solution to the equations
of motion
Comparing Poynting flux dominated magnetic tower jets with kinetic-energy dominated jets
Magnetic Towers represent one of two fundamental forms of MHD outflows.
Driven by magnetic pressure gradients, these flows have been less well studied
than magneto-centrifugally launched jets even though magnetic towers may well
be as common. Here we present new results exploring the behavior and evolution
of magnetic tower outflows and demonstrate their connection with pulsed power
experimental studies and purely hydrodynamic jets which might represent the
asymptotic propagation regimes of magneto-centrifugally launched jets.
High-resolution AMR MHD simulations (using the AstroBEAR code) provide insights
into the underlying physics of magnetic towers and help us constrain models of
their propagation. Our simulations have been designed to explore the effects of
thermal energy losses and rotation on both tower flows and their hydro
counterparts. We find these parameters have significant effects on the
stability of magnetic towers, but mild effects on the stability of hydro jets.
Current-driven perturbations in the Poynting Flux Dominated (PDF) towers are
shown to be amplified in both the cooling and rotating cases. Our studies of
the long term evolution of the towers show that the formation of weakly
magnetized central jets within the tower are broken up by these instabilities
becoming a series of collimated clumps which magnetization properties vary over
time. In addition to discussing these results in light of laboratory
experiments, we address their relevance to astrophysical observations of young
star jets and outflow from highly evolved solar type stars.Comment: 11 pages, 4 figures, accepted for publication in the High Energy
Density Physics Journal corresponding to the proceedings of the 9th
International Conference on High Energy Density Laboratory Astrophysics, May
4, 2012, Tallahassee Florid
Convection-Dominated Accretion Flows
Non-radiating, advection-dominated, accretion flows are convectively
unstable. We calculate the two-dimensional (r-theta) structure of such flows
assuming that (1) convection transports angular momentum inwards, opposite to
normal viscosity and (2) viscous transport by other mechanisms (e.g., magnetic
fields) is weak (alpha << 1). Under such conditions convection dominates the
dynamics of the accretion flow and leads to a steady state structure that is
marginally stable to convection. We show that the marginally stable flow has a
constant temperature and rotational velocity on spherical shells, a net flux of
energy from small to large radii, zero net accretion rate, and a radial density
profile proportional to r^{-1/2}, flatter than the r^{-3/2} profile
characteristic of spherical accretion flows. This solution accurately describes
the full two-dimensional structure of recent axisymmetric numerical simulations
of advection-dominated accretion flows.Comment: final version accepted by ApJ; discussion expanded, references adde
Impurity dominated thin film growth
Magnetron sputter deposition was applied to grow thin metal films in the presence of impurities. These impurities are ambient gas molecules and/or atoms from the residual gas present in the vacuum chamber. Seven materials were investigated: four single element metals (Al, Ag, Cu, and Cr), two widely applied alloys (Cu55Ni45 and Ni90Cr10), and one high entropy alloy (CoCrCuFeNi). The thin films were analyzed using X-ray diffraction to determine the domain size, the film texture, and the lattice parameter. The same trend for all studied materials is observed. When the ratio between the impurity and metal flux towards the substrate is low, the domain size is not affected by the presence of the impurities. In this regime, the incorporation of the impurities affects the lattice parameter. At high flux ratios, the change of the domain size can be described by a power law with the exponent equal to -1/2 for all studied materials. A kinetic Monte Carlo code is used to demonstrate this observed trend
Molecular tracers of PDR-dominated galaxies
Photon-dominated regions (PDRs) are powerful molecular line emitters in
external galaxies. They are expected in galaxies with high rates of massive
star formation due to either starburst (SB) events or starburst coupled with
active galactic nuclei (AGN) events. We have explored the PDR chemistry for a
range of physical conditions representing a variety of galaxy types. Our main
result is a demonstration of the sensitivity of the chemistry to changes in the
physical conditions. We adopt crude estimates of relevant physical parameters
for several galaxy types and use our models to predict suitable molecular
tracers of those conditions. The set of recommended molecular tracers differs
from that which we recommended for use in galaxies with embedded massive stars.
Thus, molecular observations can in principle be used to distinguish between
excitation by starburst and by SB+AGN in distant galaxies. Our recommendations
are intended to be useful in preparing Herschel and ALMA proposals to identify
sources of excitation in galaxies.Comment: 18 pages, 6 figures, Accepted in Ap
Preheated Advection Dominated Accretion Flow
All high temperature accretion solutions including ADAF are physically thick,
so outgoing radiation interacts with the incoming flow, sharing as much or more
resemblance with classical spherical accretion flows as with disk flows. We
examine this interaction for the popular ADAF case. We find that without
allowance for Compton preheating, a very restricted domain of ADAF solution is
permitted and with Compton preheating included a new high temperature PADAF
branch appears in the solution space. In the absence of preheating, high
temperature flows do not exist when the mass accretion rate mdot == Mdot c^2 /
L_E >~ 10^-1.5. Below this mass accretion rate, a roughly conical region around
the hole cannot sustain high temperature ions and electrons for all flows
having mdot >~ 10^-4, which may lead to a funnel possibly filled with a tenuous
hot outgoing wind. If the flow starts at large radii with the usual equilibrium
temperature ~10^4 K, the critical mass accretion rate is much lower, mdot
\~10^-3.7 above which level no self-consistent ADAF (without preheating) can
exist. However, above this critical mass accretion rate, the flow can be
self-consistently maintained at high temperature if Compton preheating is
considered. These solutions constitute a new branch of solutions as in
spherical accretion flows. High temperature PADAF flows can exist above the
critical mass accretion rate in addition to the usual cold thin disk solutions.
We also find solutions where the flow near the equatorial plane accretes
normally while the flow near the pole is overheated by Compton preheating,
possibly becoming, a polar wind, solutions which we designate WADAF.Comment: 41 pages with 10 postscript figures (aastex5). Submitted to Ap
- …
