2 research outputs found

    Synergistic effects of hypoxia and increasing CO2 on benthic invertebrates of the central Chilean coast

    Get PDF
    Ocean acidification (OA) and hypoxic events are an increasing worldwide problem, but the synergetic effects of these factors are seldom explored. However, this synergetic occurrence of stressors is prevalent. The coastline of Chile not only suffers from coastal hypoxia but the cold, oxygen-poor waters in upwelling events are also supersaturated in CO, a study site to explore the combined effect of OA and hypoxia. We experimentally evaluated the metabolic response of different invertebrate species (2 anthozoans, 9 molluscs, 4 crustaceans, 2 echinoderms) of the coastline of central Chile (33°30'S, 71°37'W) to hypoxia and OA within predicted levels and in a full factorial design. Organisms were exposed to 4 different treatments (ambient, low oxygen, high CO, and the combination of low oxygen and high CO) and metabolism was measured after 3 and 6 days. We show that the combination of hypoxia and increased pCO reduces the respiration significantly, compared to a single stressor. The evaluation of synergistic pressures, a more realistic scenario than single stressors, is crucial to evaluate the effect of future changes for coastal species and our results provide the first insight on what might happen in the next 100 years.This research is a contribution to ASSEMBLE (grant agreement no. 227799; funded by the European Community: Research Infrastructure Action under the FP7 “Capacities” Specific Program), ESTRESX project funded by the Spanish Ministry of Economy and Innovation (ref. CTM2012-32603), LINCGlobal (funded by The Spanish National Research Council (CSIC) and The Pontificia Universidad Católica de Chile (PUC) to facilitate interaction between Latin American and Spanish researchers in the field of global change). AS was funded by a fellowship from the Government of the Balearic Islands (Department on Education, Culture and Universities) and the EU (European Social Fund), LR was funded by a fellowship from the Government of Chile (CONICYT, Becas Chile Program) and IH was funded by a JAE-DOC fellowship from the Spanish Government. NAL acknowledged funds by Fondecyt 1090624 during the experimental phase and the Millennium Nucleus Center for the Study of Multiple-drivers on Marine Socio-Ecological Systems (MUSELS) by MINECON Project NC120086 also supported this work during the final stages.Peer Reviewe

    Synergistic effects of hypoxia and increasing CO2 on benthic invertebrates of the central Chilean coast

    No full text
    Ocean acidification and hypoxic events are an increasing worldwide problem, but the synergetic effects of these factors are seldom explored. However, this synergetic occurrence of stressors is prevalent. The coastline of Chile not only suffers from coastal hypoxia but the cold, oxygen-poor waters in upwelling events are also supersaturated in CO2, a study site to explore the combined effect of ocean acidification and hypoxia. We experimentally evaluated the metabolic response of different invertebrate species (2 anthozoans, 9 molluscs, 4 crustaceans, 2 echinoderms) of the coastline of central Chile (33°30’S, 71°37’W) to hypoxia and ocean acidification within predicted levels and in a full factorial design. Organisms were exposed to 4 different treatments (ambient, low oxygen, high CO2, and the combination of low oxygen and high CO2) and metabolism was measured after 3 and 6 days. We show that the combination of hypoxia and increased pCO2 reduces the respiration significantly, compared to a single stressor. The evaluation of synergistic pressures, a more realistic scenario than single stressors, is crucial to evaluate the effect of future changes for coastal species and our results provide the first insight on what might happen in the next 100 years
    corecore