3 research outputs found

    Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells

    Full text link
    The authors describe herein a Toll-like receptor 3 (TLR3) targeting delivery system based on mesoporous silica nanoparticles capped with the synthetic double stranded RNA polyinosinic-polycytidylic acid (poly(I:C)) for controlled cargo delivery in SK-BR-3 breast carcinoma cells. The authors' results show that poly(I:C)-conjugated nanoparticles efficiently targeted breast cancer cells due to dsRNA-TLR3 interaction. Such interaction also triggered apoptotic pathways in SK-BR-3, significantly decreasing cells viability. Poly(I:C) cytotoxic effect in breast carcinoma cells was enhanced by loading nanoparticles' mesopores with the anthracyclinic antibiotic doxorubicin, a commonly used chemotherapeutic agent.We thank the Spanish Government (projects SAF2010-21195 and MAT2012-38429-C04-01) and the Generalitat Valenciana (project PROMETEOII/2014/047) for support. A.U. and C.G. are grateful to the Ministry of Education, Culture and Sport for their doctoral fellowships. We thank J. M. Cosgaya and M. J. Latasa for helpful discussions.Ultimo, A.; Giménez Morales, C.; Bartovsky, P.; Aznar, E.; Sancenón Galarza, F.; Marcos Martínez, MD.; Amoros Del Toro, PJ.... (2016). Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells. Chemistry - A European Journal. 22(5):1582-1586. https://doi.org/10.1002/chem.201504629S15821586225Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 65(2), 87-108. doi:10.3322/caac.21262McGuire, A., Brown, J., Malone, C., McLaughlin, R., & Kerin, M. (2015). Effects of Age on the Detection and Management of Breast Cancer. Cancers, 7(2), 908-929. doi:10.3390/cancers7020815Stier, S., Maletzki, C., Klier, U., & Linnebacher, M. (2013). Combinations of TLR Ligands: A Promising Approach in Cancer Immunotherapy. Clinical and Developmental Immunology, 2013, 1-14. doi:10.1155/2013/271246Huang, B., Zhao, J., Li, H., He, K.-L., Chen, Y., Mayer, L., … Xiong, H. (2005). Toll-Like Receptors on Tumor Cells Facilitate Evasion of Immune Surveillance. Cancer Research, 65(12), 5009-5014. doi:10.1158/0008-5472.can-05-0784Salaun, B., Coste, I., Rissoan, M.-C., Lebecque, S. J., & Renno, T. (2006). TLR3 Can Directly Trigger Apoptosis in Human Cancer Cells. The Journal of Immunology, 176(8), 4894-4901. doi:10.4049/jimmunol.176.8.4894Salaun, B., Zitvogel, L., Asselin-Paturel, C., Morel, Y., Chemin, K., Dubois, C., … Andre, F. (2011). TLR3 as a Biomarker for the Therapeutic Efficacy of Double-stranded RNA in Breast Cancer. Cancer Research, 71(5), 1607-1614. doi:10.1158/0008-5472.can-10-3490Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362Casasús, R., Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2008). Dual Aperture Control on pH- and Anion-Driven Supramolecular Nanoscopic Hybrid Gate-like Ensembles. Journal of the American Chemical Society, 130(6), 1903-1917. doi:10.1021/ja0756772Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 122(40), 7439-7441. doi:10.1002/ange.201001847Lai, C.-Y., Trewyn, B. G., Jeftinija, D. M., Jeftinija, K., Xu, S., Jeftinija, S., & Lin, V. S.-Y. (2003). A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. Journal of the American Chemical Society, 125(15), 4451-4459. doi:10.1021/ja028650lLiu, R., Liao, P., Liu, J., & Feng, P. (2011). Responsive Polymer-Coated Mesoporous Silica as a pH-Sensitive Nanocarrier for Controlled Release. Langmuir, 27(6), 3095-3099. doi:10.1021/la104973jPark, C., Oh, K., Lee, S. C., & Kim, C. (2007). Controlled Release of Guest Molecules from Mesoporous Silica Particles Based on a pH-Responsive Polypseudorotaxane Motif. Angewandte Chemie International Edition, 46(9), 1455-1457. doi:10.1002/anie.200603404Park, C., Oh, K., Lee, S. C., & Kim, C. (2007). Controlled Release of Guest Molecules from Mesoporous Silica Particles Based on a pH-Responsive Polypseudorotaxane Motif. Angewandte Chemie, 119(9), 1477-1479. doi:10.1002/ange.200603404Aznar, E., Mondragón, L., Ros-Lis, J. V., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2011). Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 50(47), 11172-11175. doi:10.1002/anie.201102756Aznar, E., Mondragón, L., Ros-Lis, J. V., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2011). Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 123(47), 11368-11371. doi:10.1002/ange.201102756Bringas, E., Köysüren, Ö., Quach, D. V., Mahmoudi, M., Aznar, E., Roehling, J. D., … Stroeve, P. (2012). Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field. Chemical Communications, 48(45), 5647. doi:10.1039/c2cc31563gFu, Q., Rao, G. V. R., Ista, L. K., Wu, Y., Andrzejewski, B. P., Sklar, L. A., … López, G. P. (2003). Control of Molecular Transport Through Stimuli-Responsive Ordered Mesoporous Materials. Advanced Materials, 15(15), 1262-1266. doi:10.1002/adma.200305165Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499dCliment, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456dPark, C., Kim, H., Kim, S., & Kim, C. (2009). Enzyme Responsive Nanocontainers with Cyclodextrin Gatekeepers and Synergistic Effects in Release of Guests. Journal of the American Chemical Society, 131(46), 16614-16615. doi:10.1021/ja9061085Patel, K., Angelos, S., Dichtel, W. R., Coskun, A., Yang, Y.-W., Zink, J. I., & Stoddart, J. F. (2008). Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 130(8), 2382-2383. doi:10.1021/ja0772086Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 48(17), 3092-3095. doi:10.1002/anie.200805818Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie, 121(17), 3138-3141. doi:10.1002/ange.200805818Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). A Programmable DNA-Based Molecular Valve for Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 49(28), 4734-4737. doi:10.1002/anie.201000827Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). Ein programmierbares, DNA-basiertes molekulares Ventil für kolloidales, mesoporöses Siliciumoxid. Angewandte Chemie, 122(28), 4842-4845. doi:10.1002/ange.201000827Agostini, A., Mondragón, L., Pascual, L., Aznar, E., Coll, C., Martínez-Máñez, R., … Gil, S. (2012). Design of Enzyme-Mediated Controlled Release Systems Based on Silica Mesoporous Supports Capped with Ester-Glycol Groups. Langmuir, 28(41), 14766-14776. doi:10.1021/la303161eKresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0Knežević, N. Ž., & Durand, J.-O. (2015). Targeted Treatment of Cancer with Nanotherapeutics Based on Mesoporous Silica Nanoparticles. ChemPlusChem, 80(1), 26-36. doi:10.1002/cplu.201402369Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751-760. doi:10.1038/nnano.2007.387Petros, R. A., & DeSimone, J. M. (2010). Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery, 9(8), 615-627. doi:10.1038/nrd2591Wagner, V., Dullaart, A., Bock, A.-K., & Zweck, A. (2006). The emerging nanomedicine landscape. Nature Biotechnology, 24(10), 1211-1217. doi:10.1038/nbt1006-1211Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(42), 10708-10712. doi:10.1002/ange.201204663Xie, M., Shi, H., Li, Z., Shen, H., Ma, K., Li, B., … Jin, Y. (2013). A multifunctional mesoporous silica nanocomposite for targeted delivery, controlled release of doxorubicin and bioimaging. Colloids and Surfaces B: Biointerfaces, 110, 138-147. doi:10.1016/j.colsurfb.2013.04.009Wang, Y., Shi, W., Song, W., Wang, L., Liu, X., Chen, J., & Huang, R. (2012). Tumor cell targeted delivery by specific peptide-modified mesoporous silica nanoparticles. Journal of Materials Chemistry, 22(29), 14608. doi:10.1039/c2jm32398bFerris, D. P., Lu, J., Gothard, C., Yanes, R., Thomas, C. R., Olsen, J.-C., … Zink, J. I. (2011). Synthesis of Biomolecule-Modified Mesoporous Silica Nanoparticles for Targeted Hydrophobic Drug Delivery to Cancer Cells. Small, 7(13), 1816-1826. doi:10.1002/smll.201002300Tsai, C.-P., Chen, C.-Y., Hung, Y., Chang, F.-H., & Mou, C.-Y. (2009). Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. Journal of Materials Chemistry, 19(32), 5737. doi:10.1039/b905158aBernardo, A. R., Cosgaya, J. M., Aranda, A., & Jiménez-Lara, A. M. (2013). Synergy between RA and TLR3 promotes type I IFN-dependent apoptosis through upregulation of TRAIL pathway in breast cancer cells. Cell Death & Disease, 4(1), e479-e479. doi:10.1038/cddis.2013.5Patel, S., Sprung, A. U., Keller, B. A., Heaton, V. J., & Fisher, L. M. (1997). Identification of Yeast DNA Topoisomerase II Mutants Resistant to the Antitumor Drug Doxorubicin: Implications for the Mechanisms of Doxorubicin Action and Cytotoxicity. Molecular Pharmacology, 52(4), 658-666. doi:10.1124/mol.52.4.658Lyu, Y. L., Kerrigan, J. E., Lin, C.-P., Azarova, A. M., Tsai, Y.-C., Ban, Y., & Liu, L. F. (2007). Topoisomerase II  Mediated DNA Double-Strand Breaks: Implications in Doxorubicin Cardiotoxicity and Prevention by Dexrazoxane. Cancer Research, 67(18), 8839-8846. doi:10.1158/0008-5472.can-07-1649Galluzzi, L., Vacchelli, E., Eggermont, A., Fridman, W. H., Galon, J., Sautès-Fridman, C., … Kroemer, G. (2012). Trial Watch. OncoImmunology, 1(5), 699-739. doi:10.4161/onci.20696Paone, A., Starace, D., Galli, R., Padula, F., De Cesaris, P., Filippini, A., … Riccioli, A. (2008). Toll-like receptor 3 triggers apoptosis of human prostate cancer cells through a PKC- -dependent mechanism. Carcinogenesis, 29(7), 1334-1342. doi:10.1093/carcin/bgn14

    Targeting innate immunity with dsRNA-conjugated mesoporous silica nanoparticles promotes antitumor effects on breast cancer cells

    No full text
    We describe herein a Toll-like receptor 3 (TLR3) targeting delivery system based on mesoporous silica nanoparticles capped with the synthetic double stranded RNA polyinosinic-polycytidylic acid (poly(I:C)) for controlled cargo delivery in SK-BR-3 breast carcinoma cells. Our results show that poly(I:C)-conjugated nanoparticles efficiently targeted breast cancer cells due to dsRNA-TLR3 interaction. Such interaction also triggered apoptotic pathways in SK-BR-3, significantly decreasing cells viability. Poly(I:C) cytotoxic effect in breast carcinoma cells was enhanced by loading nanoparticles′ mesopores with the anthracyclinic antibiotic doxorubicin, a commonly used chemotherapeutic agent.We thank the Spanish Government (projects SAF2010-21195 and MAT2012-38429-C04-01) and the Generalitat Valenciana (project PROMETEOII/2014/ 047) for support. A.U. and C.G. are grateful to the Ministry of Education, Culture and Sport for their doctoral fellowships.Peer Reviewe

    Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells

    No full text
    The authors describe herein a Toll-like receptor 3 (TLR3) targeting delivery system based on mesoporous silica nanoparticles capped with the synthetic double stranded RNA polyinosinic-polycytidylic acid (poly(I:C)) for controlled cargo delivery in SK-BR-3 breast carcinoma cells. The authors' results show that poly(I:C)-conjugated nanoparticles efficiently targeted breast cancer cells due to dsRNA-TLR3 interaction. Such interaction also triggered apoptotic pathways in SK-BR-3, significantly decreasing cells viability. Poly(I:C) cytotoxic effect in breast carcinoma cells was enhanced by loading nanoparticles' mesopores with the anthracyclinic antibiotic doxorubicin, a commonly used chemotherapeutic agent.We thank the Spanish Government (projects SAF2010-21195 and MAT2012-38429-C04-01) and the Generalitat Valenciana (project PROMETEOII/2014/047) for support. A.U. and C.G. are grateful to the Ministry of Education, Culture and Sport for their doctoral fellowships. We thank J. M. Cosgaya and M. J. Latasa for helpful discussions.Ultimo, A.; Giménez Morales, C.; Bartovsky, P.; Aznar, E.; Sancenón Galarza, F.; Marcos Martínez, MD.; Amoros Del Toro, PJ.... (2016). Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells. Chemistry - A European Journal. 22(5):1582-1586. https://doi.org/10.1002/chem.20150462915821586225Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 65(2), 87-108. doi:10.3322/caac.21262McGuire, A., Brown, J., Malone, C., McLaughlin, R., & Kerin, M. (2015). Effects of Age on the Detection and Management of Breast Cancer. Cancers, 7(2), 908-929. doi:10.3390/cancers7020815Stier, S., Maletzki, C., Klier, U., & Linnebacher, M. (2013). Combinations of TLR Ligands: A Promising Approach in Cancer Immunotherapy. Clinical and Developmental Immunology, 2013, 1-14. doi:10.1155/2013/271246Huang, B., Zhao, J., Li, H., He, K.-L., Chen, Y., Mayer, L., … Xiong, H. (2005). Toll-Like Receptors on Tumor Cells Facilitate Evasion of Immune Surveillance. Cancer Research, 65(12), 5009-5014. doi:10.1158/0008-5472.can-05-0784Salaun, B., Coste, I., Rissoan, M.-C., Lebecque, S. J., & Renno, T. (2006). TLR3 Can Directly Trigger Apoptosis in Human Cancer Cells. The Journal of Immunology, 176(8), 4894-4901. doi:10.4049/jimmunol.176.8.4894Salaun, B., Zitvogel, L., Asselin-Paturel, C., Morel, Y., Chemin, K., Dubois, C., … Andre, F. (2011). TLR3 as a Biomarker for the Therapeutic Efficacy of Double-stranded RNA in Breast Cancer. Cancer Research, 71(5), 1607-1614. doi:10.1158/0008-5472.can-10-3490Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362Casasús, R., Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Ruiz, E. (2008). Dual Aperture Control on pH- and Anion-Driven Supramolecular Nanoscopic Hybrid Gate-like Ensembles. Journal of the American Chemical Society, 130(6), 1903-1917. doi:10.1021/ja0756772Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 122(40), 7439-7441. doi:10.1002/ange.201001847Lai, C.-Y., Trewyn, B. G., Jeftinija, D. M., Jeftinija, K., Xu, S., Jeftinija, S., & Lin, V. S.-Y. (2003). A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. Journal of the American Chemical Society, 125(15), 4451-4459. doi:10.1021/ja028650lLiu, R., Liao, P., Liu, J., & Feng, P. (2011). Responsive Polymer-Coated Mesoporous Silica as a pH-Sensitive Nanocarrier for Controlled Release. Langmuir, 27(6), 3095-3099. doi:10.1021/la104973jPark, C., Oh, K., Lee, S. C., & Kim, C. (2007). Controlled Release of Guest Molecules from Mesoporous Silica Particles Based on a pH-Responsive Polypseudorotaxane Motif. Angewandte Chemie International Edition, 46(9), 1455-1457. doi:10.1002/anie.200603404Park, C., Oh, K., Lee, S. C., & Kim, C. (2007). Controlled Release of Guest Molecules from Mesoporous Silica Particles Based on a pH-Responsive Polypseudorotaxane Motif. Angewandte Chemie, 119(9), 1477-1479. doi:10.1002/ange.200603404Aznar, E., Mondragón, L., Ros-Lis, J. V., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2011). Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 50(47), 11172-11175. doi:10.1002/anie.201102756Aznar, E., Mondragón, L., Ros-Lis, J. V., Sancenón, F., Marcos, M. D., Martínez-Máñez, R., … Amorós, P. (2011). Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 123(47), 11368-11371. doi:10.1002/ange.201102756Bringas, E., Köysüren, Ö., Quach, D. V., Mahmoudi, M., Aznar, E., Roehling, J. D., … Stroeve, P. (2012). Triggered release in lipid bilayer-capped mesoporous silica nanoparticles containing SPION using an alternating magnetic field. Chemical Communications, 48(45), 5647. doi:10.1039/c2cc31563gFu, Q., Rao, G. V. R., Ista, L. K., Wu, Y., Andrzejewski, B. P., Sklar, L. A., … López, G. P. (2003). Control of Molecular Transport Through Stimuli-Responsive Ordered Mesoporous Materials. Advanced Materials, 15(15), 1262-1266. doi:10.1002/adma.200305165Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499dCliment, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456dPark, C., Kim, H., Kim, S., & Kim, C. (2009). Enzyme Responsive Nanocontainers with Cyclodextrin Gatekeepers and Synergistic Effects in Release of Guests. Journal of the American Chemical Society, 131(46), 16614-16615. doi:10.1021/ja9061085Patel, K., Angelos, S., Dichtel, W. R., Coskun, A., Yang, Y.-W., Zink, J. I., & Stoddart, J. F. (2008). Enzyme-Responsive Snap-Top Covered Silica Nanocontainers. Journal of the American Chemical Society, 130(8), 2382-2383. doi:10.1021/ja0772086Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 48(17), 3092-3095. doi:10.1002/anie.200805818Schlossbauer, A., Kecht, J., & Bein, T. (2009). Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica. Angewandte Chemie, 121(17), 3138-3141. doi:10.1002/ange.200805818Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). A Programmable DNA-Based Molecular Valve for Colloidal Mesoporous Silica. Angewandte Chemie International Edition, 49(28), 4734-4737. doi:10.1002/anie.201000827Schlossbauer, A., Warncke, S., Gramlich, P. M. E., Kecht, J., Manetto, A., Carell, T., & Bein, T. (2010). Ein programmierbares, DNA-basiertes molekulares Ventil für kolloidales, mesoporöses Siliciumoxid. Angewandte Chemie, 122(28), 4842-4845. doi:10.1002/ange.201000827Agostini, A., Mondragón, L., Pascual, L., Aznar, E., Coll, C., Martínez-Máñez, R., … Gil, S. (2012). Design of Enzyme-Mediated Controlled Release Systems Based on Silica Mesoporous Supports Capped with Ester-Glycol Groups. Langmuir, 28(41), 14766-14776. doi:10.1021/la303161eKresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0Knežević, N. Ž., & Durand, J.-O. (2015). Targeted Treatment of Cancer with Nanotherapeutics Based on Mesoporous Silica Nanoparticles. ChemPlusChem, 80(1), 26-36. doi:10.1002/cplu.201402369Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., & Langer, R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2(12), 751-760. doi:10.1038/nnano.2007.387Petros, R. A., & DeSimone, J. M. (2010). Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery, 9(8), 615-627. doi:10.1038/nrd2591Wagner, V., Dullaart, A., Bock, A.-K., & Zweck, A. (2006). The emerging nanomedicine landscape. Nature Biotechnology, 24(10), 1211-1217. doi:10.1038/nbt1006-1211Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(42), 10708-10712. doi:10.1002/ange.201204663Xie, M., Shi, H., Li, Z., Shen, H., Ma, K., Li, B., … Jin, Y. (2013). A multifunctional mesoporous silica nanocomposite for targeted delivery, controlled release of doxorubicin and bioimaging. Colloids and Surfaces B: Biointerfaces, 110, 138-147. doi:10.1016/j.colsurfb.2013.04.009Wang, Y., Shi, W., Song, W., Wang, L., Liu, X., Chen, J., & Huang, R. (2012). Tumor cell targeted delivery by specific peptide-modified mesoporous silica nanoparticles. Journal of Materials Chemistry, 22(29), 14608. doi:10.1039/c2jm32398bFerris, D. P., Lu, J., Gothard, C., Yanes, R., Thomas, C. R., Olsen, J.-C., … Zink, J. I. (2011). Synthesis of Biomolecule-Modified Mesoporous Silica Nanoparticles for Targeted Hydrophobic Drug Delivery to Cancer Cells. Small, 7(13), 1816-1826. doi:10.1002/smll.201002300Tsai, C.-P., Chen, C.-Y., Hung, Y., Chang, F.-H., & Mou, C.-Y. (2009). Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells. Journal of Materials Chemistry, 19(32), 5737. doi:10.1039/b905158aBernardo, A. R., Cosgaya, J. M., Aranda, A., & Jiménez-Lara, A. M. (2013). Synergy between RA and TLR3 promotes type I IFN-dependent apoptosis through upregulation of TRAIL pathway in breast cancer cells. Cell Death & Disease, 4(1), e479-e479. doi:10.1038/cddis.2013.5Patel, S., Sprung, A. U., Keller, B. A., Heaton, V. J., & Fisher, L. M. (1997). Identification of Yeast DNA Topoisomerase II Mutants Resistant to the Antitumor Drug Doxorubicin: Implications for the Mechanisms of Doxorubicin Action and Cytotoxicity. Molecular Pharmacology, 52(4), 658-666. doi:10.1124/mol.52.4.658Lyu, Y. L., Kerrigan, J. E., Lin, C.-P., Azarova, A. M., Tsai, Y.-C., Ban, Y., & Liu, L. F. (2007). Topoisomerase II  Mediated DNA Double-Strand Breaks: Implications in Doxorubicin Cardiotoxicity and Prevention by Dexrazoxane. Cancer Research, 67(18), 8839-8846. doi:10.1158/0008-5472.can-07-1649Galluzzi, L., Vacchelli, E., Eggermont, A., Fridman, W. H., Galon, J., Sautès-Fridman, C., … Kroemer, G. (2012). Trial Watch. OncoImmunology, 1(5), 699-739. doi:10.4161/onci.20696Paone, A., Starace, D., Galli, R., Padula, F., De Cesaris, P., Filippini, A., … Riccioli, A. (2008). Toll-like receptor 3 triggers apoptosis of human prostate cancer cells through a PKC- -dependent mechanism. Carcinogenesis, 29(7), 1334-1342. doi:10.1093/carcin/bgn14
    corecore