1,913,544 research outputs found
Modeling a measurement-device-independent quantum key distribution system
We present a detailed description of a widely applicable mathematical model
for quantum key distribution (QKD) systems implementing the
measurement-device-independent (MDI) protocol. The model is tested by comparing
its predictions with data taken using a proof-of-principle, time-bin
qubit-based QKD system in a secure laboratory environment (i.e. in a setting in
which eavesdropping can be excluded). The good agreement between the
predictions and the experimental data allows the model to be used to optimize
mean photon numbers per attenuated laser pulse, which are used to encode
quantum bits. This in turn allows optimization of secret key rates of existing
MDI-QKD systems, identification of rate-limiting components, and projection of
future performance. In addition, we also performed measurements over deployed
fiber, showing that our system's performance is not affected by
environment-induced perturbations.Comment: 21 pages, 7 figure
Mathematical model for the dc-ac inverter for the Space Shuttle
The reader is informed of what was done for the mathematical modeling of the dc-ac inverter for the Space Shuttle. The mathematical modeling of the dc-ac inverter is an essential element in the modeling of the electrical power distribution system of the Space Shuttle. The electrical power distribution system which is present on the Space Shuttle is made up to 3 strings each having a fuel cell which provides dc to those systems which require dc, and the inverters which convert the dc to ac for those elements which require ac. The inverters are units which are 2 wire structures for the main dc inputs and 2 wire structures for the ac output. When 3 are connected together a 4 wire wye connection results on the ac side. The method of modeling is performed by using a Least Squares curve fitting method. A computer program is presented for implementation of the model along with graphs and tables to demonstrate the accuracy of the model
Mechanical behavior of thermal barrier coatings for gas turbine blades
Plasma-sprayed thermal barrier coatings (TBCs) will enable turbine components to operate at higher temperatures and lower cooling gas flow rates; thereby improving their efficiency. Future developments are limited by precise knowledge of the material properties and failure mechanisms of the coating system. Details of this nature are needed for realistic modeling of the coating system which will, in turn, promote advancements in coating technology. Complementary experiments and analytical modeling which were undertaken in order to define and measure the important failure processes for plasma-sprayed coatings are presented. The experimental portion includes two different tests which were developed to measure coating properties. These are termed tensile adhesion and acoustic emission tests. The analytical modeling section details a finite element method which was used to calculate the stress distribution in the coating system. Some preliminary results are presented
Formalizing Cyber--Physical System Model Transformation via Abstract Interpretation
Model transformation tools assist system designers by reducing the
labor--intensive task of creating and updating models of various aspects of
systems, ensuring that modeling assumptions remain consistent across every
model of a system, and identifying constraints on system design imposed by
these modeling assumptions. We have proposed a model transformation approach
based on abstract interpretation, a static program analysis technique. Abstract
interpretation allows us to define transformations that are provably correct
and specific. This work develops the foundations of this approach to model
transformation. We define model transformation in terms of abstract
interpretation and prove the soundness of our approach. Furthermore, we develop
formalisms useful for encoding model properties. This work provides a
methodology for relating models of different aspects of a system and for
applying modeling techniques from one system domain, such as smart power grids,
to other domains, such as water distribution networks.Comment: 8 pages, 4 figures; to appear in HASE 2019 proceeding
Linking Farm and Market Models to Analyse the Effects of the EU Nitrate Directive for the Dutch Agricultural Sector
This paper presents a modeling system that can be used to analyze the trade off between economy and environment. It takes into account manure policy, farm structure and manure surpluses at farm level as well as the economic effects of manure surpluses at market level. The modeling system consists of two models that are linked to each other by at the one-hand manure prices and distribution of manure over different destinations and at the other hand changes in agricultural and total manure production. One model is the so-called Manure and Ammonia Model (MAM). This model calculates manure surpluses and deficits at the farm level and distribution of manure to own farm, own region, other regions, export abroad and processing at the regional level. Moreover, MAM also calculates ammonia emissions coming from different sources. The second model is a market model that includes the most important agricultural markets. The models are calibrated for 2002. The modeling system is tested to analyze the effects of sharpened manure policies until 2006.farm models, market models, manure, economy, policy, Agricultural and Food Policy,
Distribution automation applications of fiber optics
Motivations for interest and research in distribution automation are discussed. The communication requirements of distribution automation are examined and shown to exceed the capabilities of power line carrier, radio, and telephone systems. A fiber optic based communication system is described that is co-located with the distribution system and that could satisfy the data rate and reliability requirements. A cost comparison shows that it could be constructed at a cost that is similar to that of a power line carrier system. The requirements for fiber optic sensors for distribution automation are discussed. The design of a data link suitable for optically-powered electronic sensing is presented. Empirical results are given. A modeling technique that was used to understand the reflections of guided light from a variety of surfaces is described. An optical position-indicator design is discussed. Systems aspects of distribution automation are discussed, in particular, the lack of interface, communications, and data standards. The economics of distribution automation are examined
- …
