779,366 research outputs found
Nonlinear Two-Dimensional Green's Function in Smectics
The problem of the strain of smectics subjected to a force distributed over a
line in the basal plane has been solved
UV Exposed Optical Fibers with Frequency Domain Reflectometry for Device Tracking in Intra-Arterial Procedures
Shape tracking of medical devices using strain sensing properties in optical
fibers has seen increased attention in recent years. In this paper, we propose
a novel guidance system for intra-arterial procedures using a distributed
strain sensing device based on optical frequency domain reflectometry (OFDR) to
track the shape of a catheter. Tracking enhancement is provided by exposing a
fiber triplet to a focused ultraviolet beam, producing high scattering
properties. Contrary to typical quasi-distributed strain sensors, we propose a
truly distributed strain sensing approach, which allows to reconstruct a fiber
triplet in real-time. A 3D roadmap of the hepatic anatomy integrated with a 4D
MR imaging sequence allows to navigate the catheter within the
pre-interventional anatomy, and map the blood flow velocities in the arterial
tree. We employed Riemannian anisotropic heat kernels to map the sensed data to
the pre-interventional model. Experiments in synthetic phantoms and an in vivo
model are presented. Results show that the tracking accuracy is suitable for
interventional tracking applications, with a mean 3D shape reconstruction
errors of 1.6 +/- 0.3 mm. This study demonstrates the promising potential of
MR-compatible UV-exposed OFDR optical fibers for non-ionizing device guidance
in intra-arterial procedures
Recommended from our members
Distributed Strain Sensing Using Electrical Time Domain Reflectometry With Nanocomposites
Reversible plastic events during oscillatory deformation of amorphous solids
The effect of oscillatory shear strain on nonaffine rearrangements of
individual particles in a three-dimensional binary glass is investigated using
molecular dynamics simulations. The amorphous material is represented by the
Kob-Andersen mixture at the temperature well below the glass transition. We
find that during periodic shear deformation of the material, some particles
undergo reversible nonaffine displacements with amplitudes that are
approximately power-law distributed. Our simulations show that particles with
large amplitudes of nonaffine displacement exhibit a collective behavior;
namely, they tend to aggregate into relatively compact clusters that become
comparable with the system size near the yield strain. Along with reversible
displacements there exist a number of irreversible ones. With increasing strain
amplitude, the probability of irreversible displacements during one cycle
increases, which leads to permanent structural relaxation of the material.Comment: 16 pages, 6 figure
Development of a fiber optic high temperature strain sensor
From 1 Apr. 1991 to 31 Aug. 1992, the Georgia Tech Research Institute conducted a research program to develop a high temperature fiber optic strain sensor as part of a measurement program for the space shuttle booster rocket motor. The major objectives of this program were divided into four tasks. Under Task 1, the literature on high-temperature fiber optic strain sensors was reviewed. Task 2 addressed the design and fabrication of the strain sensor. Tests and calibration were conducted under Task 3, and Task 4 was to generate recommendations for a follow-on study of a distributed strain sensor. Task 4 was submitted to NASA as a separate proposal
Evaluation of a strain-gage load calibration on a low-aspect-ratio wing structure at elevated temperature
The environmental aspect of elevated temperature and its relationship to the science of strain gage calibrations of aircraft structures are addressed. A section of a wing designed for a high-speed aircraft structure was used to study this problem. This structure was instrumented with strain gages calibrated at both elevated and room temperatures. Load equations derived from a high-temperature load calibration were compared with equations derived from an identical load calibration at room temperature. The implications of the high temperature load calibration were studied from the viewpoint of applicability and necessity. Load equations derived from the room temperature load calibration resulted in generally lower equation standard errors than equations derived from the elevated temperature load calibration. A distributed load was applied to the structure at elevated temperature and strain gage outputs were measured. This applied load was then calculated using equations derived from both the room temperature and elevated temperature calibration data. It was found that no significant differences between the two equation systems existed in terms of computing this applied distributed load, as long as the thermal shifts resulting from thermal stresses could be identified. This identification requires a heating of the structure. Therefore, it is concluded that for this structure, a high temperature load calibration is not required. However, a heating of the structure is required to determine thermal shifts
Mechanical properties of polycrystalline graphene based on a realistic atomistic model
Graphene can at present be grown at large quantities only by the chemical
vapor deposition method, which produces polycrystalline samples. Here, we
describe a method for constructing realistic polycrystalline graphene samples
for atomistic simulations, and apply it for studying their mechanical
properties. We show that cracks initiate at points where grain boundaries meet
and then propagate through grains predominantly in zigzag or armchair
directions, in agreement with recent experimental work. Contrary to earlier
theoretical predictions, we observe normally distributed intrinsic strength (~
50% of that of the mono-crystalline graphene) and failure strain which do not
depend on the misorientation angles between the grains. Extrapolating for grain
sizes above 15 nm results in a failure strain of ~ 0.09 and a Young's modulus
of ~ 600 GPa. The decreased strength can be adequately explained with a
conventional continuum model when the grain boundary meeting points are
identified as Griffith cracks.Comment: Accepted for Physical Review B; 5 pages, 4 figure
- …
