9,486 research outputs found

    Distributed Denial-of-Service Defense System

    Get PDF
    Distributed denial-of-service (DoS) attacks present a great threat to the Internet, and existing security mechanisms cannot detect or stop them successfully. The problem lies in the distributed nature of attacks, which engages the power of a vast number of coordinated hosts. To mitigate the impacts of DDoS attacks, it is important to develop such defenses system that canbothdetect andreact against ongoing attacks. The attacks ideally should be stopped as close to the sources as possible, saving network resources andreducing congestion. The DDoS defense system that is deployed at the source-end should prevent the machines at associated network from participating in DDoS attacks. The primary objective of this project, which is developing a DDoS defense system, is to provide good service to a victim's legitimate clients during the attack, thus canceling the denial-of-service effect. The scope of study will coverthe aspect of howthe attack detection algorithms work and identify the attack traffic, hence develop appropriate attack responses. As a source-end defense against DDoS attacks, the attack flows can be stopped before they enter the Internet core and before they aggregate with other attack flows. The methodology chosen for this project is the combination of sequential and iterative approaches of the software development process, which comprises of six main phases, which are initial planning phase, requirement definition phase, system design phase, coding and testing phase, implementation phase, and lastly maintenance and support phase. The system used a source router approach, in which the source router serves as a gateway between the source network containing some of the attack nodes and the rest of the Internet, to detectand limitDDoS streams long before they reach the target. This will be covered in the Findings section of the report. TheDiscussion section will be focus more onthe architecture onthe system, which having three important component; observation, rate-limiting and traffic-policing

    Distributed Denial of Service Attack in Networks

    Get PDF
    In communications the area of coverage is very important, such that personal space or long range to send information. The distance refers to class of networks such as per-sonal range or wide area, while the protocols of communications refer to mode or type of networks, such as ad-hoc or self organization etc. Our aim is to provide a tutorial to introduce DDoS attack and its working knowledge as well as rectifications. We will address its issues and suggest how it can overcome

    "LUDO" - Kids playing Distributed Denial of Service

    Get PDF
    Distributed denial of service attacks pose a serious threat to the availability of the network infrastructures and services. GE̿ANT, the pan-European network with terabit capacities witnesses close to hundreds of DDoS attacks on a daily basis. The reason is that DDoS attacks are getting larger, more sophisticated and frequent. At the same time, it has never been easier to execute DDoS attacks, e.g., Booter services offer paying customers without any technical knowledge the possibility to perform DDoS attacks as a service. Given the increasing size, frequency and complexity of DDoS attacks, there is a need to perform a collaborative mitigation. Therefore, we developed (i) a DDoSDB to share real attack data and allow collaborators to query, compare, and download attacks, (ii) the Security attack experimentation framework to test mitigation and response capabilities and (iii) a collaborative mitigation and response process among trusted partners to disseminate security event information. In addition to these developments, we present and would like to discuss our latest research results with experienced networking operators and bridging the gap between academic research and operational business
    corecore