3,027 research outputs found

    Loss of neurons from laminas I-III of the spinal dorsal horn is not required for development of tactile allodynia in the spared nerve injury model of neuropathic pain

    Get PDF
    It has been proposed that death of inhibitory interneurons in the dorsal horn contributes to the neuropathic pain that follows partial nerve injury. In this study, we have used two approaches to test whether there is neuronal death in the dorsal horn in the spared nerve injury (SNI) model. We performed a stereological analysis of the packing density of neurons in laminas I-III 4 weeks after operation and found no reduction on the ipsilateral side compared with that seen on the contralateral side or in sham-operated or naive rats. In addition, we used two markers of apoptosis, terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) staining and immunocytochemical detection of cleaved (activated) caspase-3. Neither of these methods demonstrated apoptotic neurons in the dorsal spinal cord 1 week after operation. Although TUNEL-positive cells were present throughout the gray and white matter at this stage, they were virtually all labeled with antibody against ionized calcium-binding adapter molecule 1, a marker for microglia. All animals that underwent SNI showed clear signs of tactile allodynia affecting the ipsilateral hindpaw. These results suggest that a significant loss of neurons from the dorsal horn is not necessary for the development of tactile allodynia in the SNI model

    A quantitative study of inhibitory interneurons in laminae I-III of the mouse spinal dorsal horn

    Get PDF
    Laminae I-III of the spinal dorsal horn contain many inhibitory interneurons that use GABA and/or glycine as a neurotransmitter. Distinct neurochemical populations can be recognised among these cells, and these populations are likely to have differing roles in inhibiting pain or itch. Quantitative studies in rat have shown that inhibitory interneurons account for 25-40% of all neurons in this region. The sst2A receptor is expressed by around half the inhibitory interneurons in laminae I-II, and is associated with particular neurochemically-defined populations. Although much of the work on spinal pain mechanisms has been performed on rat, the mouse is now increasingly used as a model, due to the availability of genetically altered lines. However, quantitative information on the arrangement of interneurons is lacking in the mouse, and it is possible that there are significant species differences in neuronal organisation. In this study, we show that as in the rat, nearly all neurons in laminae I-III that are enriched with glycine also contain GABA, which suggests that GABA-immunoreactivity can be used to identify inhibitory interneurons in this region. These cells account for 26% of the neurons in laminae I-II and 38% of those in lamina III. As in the rat, the sst2A receptor is only expressed by inhibitory interneurons in laminae I-II, and is present on just over half (54%) of these cells. Antibody against the neurokinin 1 receptor was used to define lamina I, and we found that although the receptor was concentrated in this lamina, it was expressed by many fewer cells than in the rat. By estimating the total numbers of neurons in each of these laminae in the L4 segment of the mouse, we show that there are around half as many neurons in each lamina as are present in the corresponding segment of the rat

    A quantitative study of neurochemically-defined populations of inhibitory interneurons in the superficial dorsal horn of the mouse spinal cord

    Get PDF
    Around a quarter of neurons in laminae I-II of the dorsal horn are inhibitory interneurons. These play an important role in modulating somatosensory information, including that perceived as pain or itch. Previous studies in rat identified four largely non-overlapping neurochemical populations among these cells, defined by expression of galanin, neuropeptide Y (NPY), neuronal nitric oxide synthase (nNOS) or parvalbumin. The galanin cells were subsequently shown to coexpress dynorphin. Several recent studies have used genetically-modified mice to investigate the function of different interneuron populations, and it is therefore important to determine whether the same pattern applies in mouse, and to estimate the relative sizes of these populations. We show that the neurochemical organisation of inhibitory interneurons in mouse superficial dorsal horn is similar to that in the rat, although a larger proportion of these neurons (33%) express NPY. Between them, these four populations account for ∼75% of inhibitory cells in laminae I-II. Since ∼25% of inhibitory interneurons in this region belong to a novel calretinin-expressing type, our results suggest that virtually all inhibitory interneurons in superficial dorsal horn can be assigned to one of these five neurochemical populations. Although our main focus was inhibitory neurons, we also identified a population of excitatory dynorphin-expressing cells in laminae I-II that are largely restricted to the medial part of the mid-lumbar dorsal horn, corresponding to glabrous skin territory. These findings are important for interpretation of studies using molecular-genetic techniques to manipulate the functions of interneuron populations to investigate their roles in somatosensory processing

    Abnormal motoneuron migration, differentiation, and axon outgrowth in spinal muscular atrophy

    Get PDF
    The role of heterotopic (migratory) motoneurons (HMN) in the pathogenesis of spinal muscular atrophy (SMA) is still controversial. We examined the occurrence and amount of HMN in spinal cord tissue from eight children with SMA (six with SMA-I and two with SMA-II). All affected subjects were carrying a homozygous deletion of exon 7 in the SMN1 gene. Unlike controls, virtually free from HMN, all SMA subjects showed a significant number of HMN at all levels of the spinal cord. Heterotopic neurons were hyperchromatic, located mostly in the ventral white matter and had no axon or dendrites. More than half of the HMN were very undifferentiated, as judged from their lack of immunoreactivity for NeuN and MAP2 proteins. Small numbers of more differentiated heterotopic neurons were also found in the dorsal and lateral white matter region. As confirmed by ultrastructural analysis, in situ end labeling (ISEL) and CD68 immunoreactivity, HMN in the ventral outflow were found to have no synapses, to activate microglial cells, and to eventually die by necrosis. An unbiased quantitative analysis showed a significant negative correlation between age of SMA subjects (a reflection of the clinical severity) and the number of HMN. Subjects who died at older ages had increased number of GFAP-positive astrocytes. Complementing our previous report on motoneuron apoptosis within the ventral horns in SMA, we now propose that abnormal migration, differentiation, and lack of axonal outgrowth may induce motoneuron apoptosis predominantly during early stages, whereas a slower necrosis-like cell death of displaced motoneurons which "escaped" apoptosis characterizes later stages of SMA

    A stereological study of the effects of mercury inhalation on the cerebellum

    Get PDF
    Mercury in the environment that arises from organic and inorganic sources can cause irreversible damage to the nervous system. Toxicity may be direct or may arise from interactions with other metals in the environment. We evaluated the possible effects of mercury vapor on rat cerebellum. Twelve adult female rats were divided into control and experimental groups. The rats in the experimental group were exposed to mercury vapor for 9 h/day for 45 days. Cerebellar tissue samples were evaluated using stereology and for histopathology. The total number of Purkinje cells was estimated using a physical disector method. We found that in the experimental group, overall volume decreased and the number of Purkinje cells was reduced. We also found cellular damage including pycnotic nuclei, eosinophilic cytoplasm and vacuolization; these features were absent in the control group. We found that chronic exposure to inorganic mercury vapor is toxic to the cerebellum

    The expansion of 300 CTG repeats in myotonic dystrophy transgenic mice does not induce sensory or motor neuropathy

    Get PDF
    Summary: Although many studies have been carried out to verify the involvement of the peripheral nervous system (PNS) in dystrophia myotonica (DM1) patients, the results remain controversial. The generation of DM1 transgenic mice displaying the human DM1 phenotype provides a useful tool to investigate the type and incidence of structural abnormalities in the PNS. In the present study, the morphological and morphometric analysis of semi-thin sections of sciatic and sural nerves, lumbar dorsal root ganglia (DRG) and lumbar spinal cords revealed that in DM1 transgenic mice carrying 300 CTG repeats, there is no change in the number and diameter of myelinated axons compared to wild type. Only a non-significant reduction in the percentage of thin myelinated axons was detected in electron micrographs of ultra-thin sciatic nerve sections. Analysis of the number of neurons did not reveal a loss in number of either sensory neurons in the lumbar DRG or motor neurons in the lumbar spinal cord in these DM1 mice. Furthermore, in hind limb muscle sections, stained with a neurofilament antibody and α-bungarotoxin, the intramuscular axon arborization appeared normal in DM1 mice and undistinguishable from that in wild-type mice. Moreover, in DM1 mice, there was no irregularity in the structure or an increase in the endplate area. Also statistical analysis did not show an increase in endplate density or in the concentration of acetylcholine receptors. Altogether, these results suggest that 300 CTG repeats are not sufficient to induce axonopathy, demyelination or neuronopathies in this transgenic mouse mode

    Utilidad de un sistema de seguimiento óptico de instrumental en cirugía laparoscópica para evaluación de destrezas motoras

    Get PDF
    En este trabajo se estudia la utilidad de un sistema de evaluación de destrezas quirúrgicas basado en el análisis de los movimientos del instrumental laparoscópico. Método: El sistema consta de un simulador físico laparoscópico y un sistema de seguimiento y evaluación de habilidades técnicas quirúrgicas. En el estudio han participado 6 cirujanos con experiencia intermedia (entre 1 y 50 intervenciones laparoscópicas) y 5 cirujanos expertos (más de 50 intervenciones laparoscópicas), todos ellos con la mano derecha como dominante. Cada sujeto realizó 3 repeticiones de una tarea de corte con la mano derecha en tejido sintético, una disección de la serosa gástrica y una sutura en la disección realizada. Para cada ejercicio se analizaron los parámetros de tiempo, distancia recorrida, velocidad, aceleración y suavidad de movimientos para los instrumentos de ambas manos. Resultados: En la tarea de corte, los cirujanos expertos muestran menor aceleración (p = 0,014) y mayor suavidad en los movimientos (p = 0,023) en el uso de la tijera. Respecto a la actividad de disección, los cirujanos expertos requieren menos tiempo (p = 0,006) y recorren menos distancia con ambos instrumentos (p = 0,006 para disector y p = 0,01 para tijera). En la tarea de sutura, los cirujanos expertos presentan menor tiempo de ejecución que los cirujanos de nivel intermedio (p = 0,037) y recorren menos distancia con el disector (p = 0,041). Conclusiones: El sistema de evaluación se mostró útil en las tareas de corte, disección y sutura, y constituye un progreso en el desarrollo de sistemas avanzados de entrenamiento y evaluación de destrezas quirúrgicas laparoscópicas

    Preprotachykinin A (PPTA) is expressed by a distinct population of excitatory neurons in the mouse superficial spinal dorsal horn including cells that respond to noxious and pruritic stimuli

    Get PDF
    The superficial dorsal horn, which is the main target for nociceptive and pruritoceptive primary afferents, contains a high density of excitatory interneurons. Our understanding of their roles in somatosensory processing has been restricted by the difficulty of distinguishing functional populations among these cells. We recently defined three non-overlapping populations among the excitatory neurons, based on the expression of neurotensin, neurokinin B (NKB) and gastrin-releasing peptide (GRP). Here we identify and characterise another population: neurons that express the tachykinin peptide substance P. We show with immunocytochemistry that its precursor protein (preprotachykinin A, PPTA) can be detected in ~14% of lamina I-II neurons, and these are concentrated in the outer part of lamina II. Over 80% of the PPTA-positive cells lack the transcription factor Pax2 (which determines an inhibitory phenotype), and these account for ~15% of the excitatory neurons in this region. They are different from the neurotensin, NKB or GRP neurons, although many of them contain somatostatin, which is widely expressed among superficial dorsal horn excitatory interneurons. We show that many of these cells respond to noxious thermal and mechanical stimuli, and to intradermal injection of pruritogens. Finally, we demonstrate that these cells can also be identified in a knock-in Cre mouse line (Tac1Cre), although our findings suggest that there is an additional population of neurons that transiently express PPTA. This population of substance P-expressing excitatory neurons is likely to play an important role in transmission of signals that are perceived as pain and itch
    corecore