11,865 research outputs found
Joint Syntacto-Discourse Parsing and the Syntacto-Discourse Treebank
Discourse parsing has long been treated as a stand-alone problem independent
from constituency or dependency parsing. Most attempts at this problem are
pipelined rather than end-to-end, sophisticated, and not self-contained: they
assume gold-standard text segmentations (Elementary Discourse Units), and use
external parsers for syntactic features. In this paper we propose the first
end-to-end discourse parser that jointly parses in both syntax and discourse
levels, as well as the first syntacto-discourse treebank by integrating the
Penn Treebank with the RST Treebank. Built upon our recent span-based
constituency parser, this joint syntacto-discourse parser requires no
preprocessing whatsoever (such as segmentation or feature extraction), achieves
the state-of-the-art end-to-end discourse parsing accuracy.Comment: Accepted at EMNLP 201
A PDTB-Styled End-to-End Discourse Parser
We have developed a full discourse parser in the Penn Discourse Treebank
(PDTB) style. Our trained parser first identifies all discourse and
non-discourse relations, locates and labels their arguments, and then
classifies their relation types. When appropriate, the attribution spans to
these relations are also determined. We present a comprehensive evaluation from
both component-wise and error-cascading perspectives.Comment: 15 pages, 5 figures, 7 table
Discourse relations and conjoined VPs: automated sense recognition
Sense classification of discourse relations is a sub-task of shallow discourse parsing. Discourse relations can occur both across sentences (inter-sentential) and within sentences (intra-sentential), and more than one discourse relation can hold between the same units. Using a newly available corpus of discourse-annotated intra-sentential conjoined verb phrases, we demonstrate a sequential classification system for their multi-label sense classification. We assess the importance of each feature used in the classification, the feature scope, and what is lost in moving from gold standard manual parses to the output of an off-the-shelf parser
Neural Discourse Structure for Text Categorization
We show that discourse structure, as defined by Rhetorical Structure Theory
and provided by an existing discourse parser, benefits text categorization. Our
approach uses a recursive neural network and a newly proposed attention
mechanism to compute a representation of the text that focuses on salient
content, from the perspective of both RST and the task. Experiments consider
variants of the approach and illustrate its strengths and weaknesses.Comment: ACL 2017 camera ready versio
Implicit Discourse Relation Classification via Multi-Task Neural Networks
Without discourse connectives, classifying implicit discourse relations is a
challenging task and a bottleneck for building a practical discourse parser.
Previous research usually makes use of one kind of discourse framework such as
PDTB or RST to improve the classification performance on discourse relations.
Actually, under different discourse annotation frameworks, there exist multiple
corpora which have internal connections. To exploit the combination of
different discourse corpora, we design related discourse classification tasks
specific to a corpus, and propose a novel Convolutional Neural Network embedded
multi-task learning system to synthesize these tasks by learning both unique
and shared representations for each task. The experimental results on the PDTB
implicit discourse relation classification task demonstrate that our model
achieves significant gains over baseline systems.Comment: This is the pre-print version of a paper accepted by AAAI-1
- …
