80,566 research outputs found

    Direct Cardiac Reprogramming: Progress and Promise.

    Get PDF
    The human adult heart lacks a robust endogenous repair mechanism to fully restore cardiac function after insult; thus, the ability to regenerate and repair the injured myocardium remains a top priority in treating heart failure. The ability to efficiently generate a large number of functioning cardiomyocytes capable of functional integration within the injured heart has been difficult. However, the ability to directly convert fibroblasts into cardiomyocyte-like cells both in vitro and in vivo offers great promise in overcoming this problem. In this review, we describe the insights and progress that have been gained from the investigation of direct cardiac reprogramming. We focus on the use of key transcription factors and cardiogenic genes as well as on the use of other biological molecules such as small molecules, cytokines, noncoding RNAs, and epigenetic modifiers to improve the efficiency of cardiac reprogramming. Finally, we discuss the development of safer reprogramming approaches for future clinical application

    Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells.

    Get PDF
    The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation

    Reprogramming of postnatal neurons into induced pluripotent stem cells by defined factors

    Get PDF
    Pluripotent cells can be derived from different types of somatic cells by nuclear reprogramming through the ectopic expression of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc. However, it is unclear whether postmitotic neurons are susceptible to direct reprogramming. Here, we show that postnatal cortical neurons, the vast majority of which are postmitotic, are amenable to epigenetic reprogramming. However, ectopic expression of the four canonical reprogramming factors is not sufficient to reprogram postnatal neurons. Efficient reprogramming was only achieved after forced cell proliferation by p53 suppression. Additionally, overexpression of repressor element-1 silencing transcription, a suppressor of neuronal gene activity, increased reprogramming efficiencies in combination with the reprogramming factors. Our findings indicate that terminally differentiated postnatal neurons are able to acquire the pluripotent state by direct epigenetic reprogramming, and this process is made more efficient through the suppression of lineage specific gene expression. STEM CELLS 2011;29:992–1000National Institutes of Health (U.S.) (Grant NIH HD045022)National Institutes of Health (U.S.) (Grant 5R37CA084198)Howard Hughes Medical Institut

    Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells

    Get PDF
    The anti-diabetic drug metformin regulates T-cell responses to immune activation and is proposed to function by regulating the energy-stress-sensing adenosine-monophosphate-activated protein kinase (AMPK). However, the molecular details of how metformin controls T cell immune responses have not been studied nor is there any direct evidence that metformin acts on T cells via AMPK. Here, we report that metformin regulates cell growth and proliferation of antigen-activated T cells by modulating the metabolic reprogramming that is required for effector T cell differentiation. Metformin thus inhibits the mammalian target of rapamycin complex I signalling pathway and prevents the expression of the transcription factors c-Myc and hypoxia-inducible factor 1 alpha. However, the inhibitory effects of metformin on T cells did not depend on the expression of AMPK in T cells. Accordingly, experiments with metformin inform about the importance of metabolic reprogramming for T cell immune responses but do not inform about the importance of AMPK

    Regenerative Medicine for the Aging Brain

    Get PDF
    In the central nervous system, cholinergic and dopaminergic (DA) neurons are among the cells most susceptible to the deleterious effects of age. Thus, the basal forebrain cholinergic system is known to undergo moderate neurodegenerative changes during normal aging as well as severe atrophy in Alzheimer’s disease (AD). Parkinson’s disease (PD), a degeneration of nigro-striatal DA neurons is the most conspicuous reflection of the vulnerability of DA neurons to age. In this context, cell reprogramming offers novel therapeutic possibilities for the treatment of these devastating diseases. In effect, the generation of induced pluripotent stem cells (iPSCs) from somatic cells demonstrated that adult mammalian cells can be reprogrammed to a pluripotent state by the overexpression of a few embryonic transcription factors (TF). This discovery fundamentally widened the research horizon in the fields of disease modeling and regenerative medicine. Although it is possible to re-differentiate iPSCs to specific somatic cell types, the tumorigenic potential of contaminating iPSCs that failed to differentiate, increases the risk for clinical application of somatic cells generated by this procedure. Therefore, reprogramming approaches that bypass the pluripotent stem cell state are being explored. A method called lineage reprogramming has been recently documented. It consists of the direct conversion of one adult cell type into another by transgenic expression of multiple lineage-specific TF or microRNAs. Another approach, termed direct reprogramming, features several advantages such as the use of universal TF system and the ability to generate a rejuvenated multipotent progenitor cell population, able to differentiate into specific cell types in response to a specific differentiation factors. These novel approaches offer a new promise for the treatment of pathologies associated with the loss of specific cell types as for instance, nigral DA neurons (in PD) or basal forebrain cholinergic neurons in the early stages of AD. The above topics are reviewed here.Fil: López León, Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaFil: Reggiani, Paula Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaFil: Hereñú, Claudia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; ArgentinaFil: Goya, Rodolfo Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata ; Argentin

    A mini-review of TAT-MyoD fused proteins: state of the art and problems to solve.

    Get PDF
    open6siopenPatruno, M; Melotti L.; Gomiero, C; Sacchetto, R; Topel, O; Martinello, T.Patruno, M; Melotti, Luca; Gomiero, C; Sacchetto, R; Topel, O; Martinello, T

    Induced Stem Cells as a Novel Multiple Sclerosis Therapy.

    Get PDF
    Stem cell replacement is providing hope for many degenerative diseases that lack effective therapeutic methods including multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system. Transplantation of neural stem cells or mesenchymal stem cells is a potential therapy for MS thanks to their capacity for cell repopulation as well as for their immunomodulatory and neurotrophic properties. Induced pluripotent stem cell (iPSC), an emerging cell source in regenerative medicine, is also being tested for the treatment of MS. Remarkable improvement in mobility and robust remyelination have been observed after transplantation of iPSC-derived neural cells into demyelinated models. Direct reprogramming of somatic cells into induced neural cells, such as induced neural stem cells (iNSCs) and induced oligodendrocyte progenitor cells (iOPCs), without passing through the pluripotency stage, is an alternative for transplantation that has been proved effective in the congenital hypomyelination model. iPSC technology is rapidly progressing as efforts are being made to increase the efficiency of iPSC therapy and reduce its potential side effects. In this review, we discuss the recent advances in application of stem cells, with particular focus on induced stem/progenitor cells (iPSCs, iNSC, iOPCs), which are promising in the treatment of MS

    Heartbreak hotel: a convergence in cardiac regeneration

    Get PDF
    In February 2016, the Company of Biologists hosted an intimate gathering of leading international researchers at the forefront of experimental cardiovascular regeneration, with its emphasis on ‘Transdifferentiation and Tissue Plasticity in Cardiovascular Rejuvenation’. As I review here, participants at the workshop revealed how understanding cardiac growth and lineage decisions at their most fundamental level has transformed the strategies in hand that presently energize the prospects for human heart repair

    Transcriptomic-metabolomic reprogramming in EGFR-mutant NSCLC early adaptive drug escape linking TGFβ2-bioenergetics-mitochondrial priming.

    Get PDF
    The impact of EGFR-mutant NSCLC precision therapy is limited by acquired resistance despite initial excellent response. Classic studies of EGFR-mutant clinical resistance to precision therapy were based on tumor rebiopsies late during clinical tumor progression on therapy. Here, we characterized a novel non-mutational early adaptive drug-escape in EGFR-mutant lung tumor cells only days after therapy initiation, that is MET-independent. The drug-escape cell states were analyzed by integrated transcriptomic and metabolomics profiling uncovering a central role for autocrine TGFβ2 in mediating cellular plasticity through profound cellular adaptive Omics reprogramming, with common mechanistic link to prosurvival mitochondrial priming. Cells undergoing early adaptive drug escape are in proliferative-metabolic quiescent, with enhanced EMT-ness and stem cell signaling, exhibiting global bioenergetics suppression including reverse Warburg, and are susceptible to glutamine deprivation and TGFβ2 inhibition. Our study further supports a preemptive therapeutic targeting of bioenergetics and mitochondrial priming to impact early drug-escape emergence using EGFR precision inhibitor combined with broad BH3-mimetic to interrupt BCL-2/BCL-xL together, but not BCL-2 alone
    corecore