207,145 research outputs found

    Brownian yet non-Gaussian diffusion: from superstatistics to subordination of diffusing diffusivities

    Get PDF
    A growing number of biological, soft, and active matter systems are observed to exhibit normal diffusive dynamics with a linear growth of the mean squared displacement, yet with a non-Gaussian distribution of increments. Based on the Chubinsky-Slater idea of a diffusing diffusivity we here establish and analyze a minimal model framework of diffusion processes with fluctuating diffusivity. In particular, we demonstrate the equivalence of the diffusing diffusivity process with a superstatistical approach with a distribution of diffusivities, at times shorter than the diffusivity correlation time. At longer times a crossover to a Gaussian distribution with an effective diffusivity emerges. Specifically, we establish a subordination picture of Brownian but non-Gaussian diffusion processes, that can be used for a wide class of diffusivity fluctuation statistics. Our results are shown to be in excellent agreement with simulations and numerical evaluations.Comment: 19 pages, 6 figures, RevTeX. Physical Review X, at pres

    Nuclear Isospin Diffusivity

    Full text link
    The isospin diffusion and other irreversible phenomena are discussed for a two-component nuclear Fermi system. The set of Boltzmann transport equations, such as employed for reactions, are linearized, for weak deviations of a system from uniformity, in order to arrive at nonreversible fluxes linear in the nonuniformities. Besides the diffusion driven by a concentration gradient, also the diffusion driven by temperature and pressure gradients is considered. Diffusivity, conductivity, heat conduction and shear viscosity coefficients are formally expressed in terms of the responses of distribution functions to the nonuniformities. The linearized Boltzmann-equation set is solved, under the approximation of constant form-factors in the distribution-function responses, to find concrete expressions for the transport coefficients in terms of weighted collision integrals. The coefficients are calculated numerically for nuclear matter, using experimental nucleon-nucleon cross sections. The isospin diffusivity is inversely proportional to the neutron-proton cross section and is also sensitive to the symmetry energy. At low temperatures in symmetric matter, the diffusivity is directly proportional to the symmetry energy.Comment: 35 pages, 1 table, 5 figures, accepted by PRC, (v3) changes in response to the referee's comments, discussion for isospin diffusion process in heavy-ion reactions, fig. 5 shows results from a two different isospin depndent uclear equation of state, and a new reference adde

    An acoustic view of ocean mixing

    Get PDF
    Knowledge of the parameter K (turbulent diffusivity/"mixing intensity") is a key to understand transport processes of matter and energy in the ocean. Especially the almost vertical component of K across the ocean stratification (diapycnal diffusivity) is vital for research on biogeochemical cycles or greenhouse gas budgets. Recent boost in precision of water velocity data that can be obtained from vessel-mounted acoustic instruments (vmADCP) allows identifying ocean regions of elevated diapycnal diffusivity during research cruises - in high horizontal resolution and without extra ship time needed. This contribution relates acoustic data from two cruises in the Tropical North East Atlantic Oxygen Minimum Zone to simultaneous field observations of diapycnal diffusivity: pointwise measurements by a microstructure profiler as well as one integrative value from a large scale Tracer Release Experiment
    corecore