108,221 research outputs found
Angular Upsampling in Infant Diffusion MRI Using Neighborhood Matching in x-q Space
Diffusion MRI requires sufficient coverage of the diffusion wavevector space,
also known as the q-space, to adequately capture the pattern of water diffusion
in various directions and scales. As a result, the acquisition time can be
prohibitive for individuals who are unable to stay still in the scanner for an
extensive period of time, such as infants. To address this problem, in this
paper we harness non-local self-similar information in the x-q space of
diffusion MRI data for q-space upsampling. Specifically, we first perform
neighborhood matching to establish the relationships of signals in x-q space.
The signal relationships are then used to regularize an ill-posed inverse
problem related to the estimation of high angular resolution diffusion MRI data
from its low-resolution counterpart. Our framework allows information from
curved white matter structures to be used for effective regularization of the
otherwise ill-posed problem. Extensive evaluations using synthetic and infant
diffusion MRI data demonstrate the effectiveness of our method. Compared with
the widely adopted interpolation methods using spherical radial basis functions
and spherical harmonics, our method is able to produce high angular resolution
diffusion MRI data with greater quality, both qualitatively and quantitatively.Comment: 15 pages, 12 figure
Probing white-matter microstructure with higher-order diffusion tensors and susceptibility tensor MRI.
Diffusion MRI has become an invaluable tool for studying white matter microstructure and brain connectivity. The emergence of quantitative susceptibility mapping and susceptibility tensor imaging (STI) has provided another unique tool for assessing the structure of white matter. In the highly ordered white matter structure, diffusion MRI measures hindered water mobility induced by various tissue and cell membranes, while susceptibility sensitizes to the molecular composition and axonal arrangement. Integrating these two methods may produce new insights into the complex physiology of white matter. In this study, we investigated the relationship between diffusion and magnetic susceptibility in the white matter. Experiments were conducted on phantoms and human brains in vivo. Diffusion properties were quantified with the diffusion tensor model and also with the higher order tensor model based on the cumulant expansion. Frequency shift and susceptibility tensor were measured with quantitative susceptibility mapping and susceptibility tensor imaging. These diffusion and susceptibility quantities were compared and correlated in regions of single fiber bundles and regions of multiple fiber orientations. Relationships were established with similarities and differences identified. It is believed that diffusion MRI and susceptibility MRI provide complementary information of the microstructure of white matter. Together, they allow a more complete assessment of healthy and diseased brains
Generating Diffusion MRI scalar maps from T1 weighted images using generative adversarial networks
Diffusion magnetic resonance imaging (diffusion MRI) is a non-invasive
microstructure assessment technique. Scalar measures, such as FA (fractional
anisotropy) and MD (mean diffusivity), quantifying micro-structural tissue
properties can be obtained using diffusion models and data processing
pipelines. However, it is costly and time consuming to collect high quality
diffusion data. Here, we therefore demonstrate how Generative Adversarial
Networks (GANs) can be used to generate synthetic diffusion scalar measures
from structural T1-weighted images in a single optimized step. Specifically, we
train the popular CycleGAN model to learn to map a T1 image to FA or MD, and
vice versa. As an application, we show that synthetic FA images can be used as
a target for non-linear registration, to correct for geometric distortions
common in diffusion MRI
MRI in multiple myeloma : a pictorial review of diagnostic and post-treatment findings
Magnetic resonance imaging (MRI) is increasingly being used in the diagnostic work-up of patients with multiple myeloma. Since 2014, MRI findings are included in the new diagnostic criteria proposed by the International Myeloma Working Group. Patients with smouldering myeloma presenting with more than one unequivocal focal lesion in the bone marrow on MRI are considered having symptomatic myeloma requiring treatment, regardless of the presence of lytic bone lesions. However, bone marrow evaluation with MRI offers more than only morphological information regarding the detection of focal lesions in patients with MM. The overall performance of MRI is enhanced by applying dynamic contrast-enhanced MRI and diffusion weighted imaging sequences, providing additional functional information on bone marrow vascularization and cellularity. This pictorial review provides an overview of the most important imaging findings in patients with monoclonal gammopathy of undetermined significance, smouldering myeloma and multiple myeloma, by performing a 'total' MRI investigation with implications for the diagnosis, staging and response assessment. Main message aEuro cent Conventional MRI diagnoses multiple myeloma by assessing the infiltration pattern. aEuro cent Dynamic contrast-enhanced MRI diagnoses multiple myeloma by assessing vascularization and perfusion. aEuro cent Diffusion weighted imaging evaluates bone marrow composition and cellularity in multiple myeloma. aEuro cent Combined morphological and functional MRI provides optimal bone marrow assessment for staging. aEuro cent Combined morphological and functional MRI is of considerable value in treatment follow-up
Design of Anisotropic Diffusion Hardware Fiber Phantoms
A gold standard for the validation of diffusion weighted magnetic resonance imaging (DW-MRI) in brain white matter (WM) is essential for clinical purposes but still not available. Synthetic anisotropic fiber bundles are proposed as phantoms for the validation of DW-MRI because of their well-known structure, their long preservability and the possibility
to create complex geometries such as curved and fiber crossings. A crucial question is how the different material properties and size of the fiber phantoms influence the outcome of the DW-MRI experiment. Several fiber materials are compared in this study. The effect of surface
relaxation and internal gradients on the SNR is evaluated. In addition, the dependency of the fiber density and fiber radius on the diffusion properties is investigated
A Self-Consistent Reduced Model for Dusty Magnetorotationally Unstable Discs
The interaction between settling of dust grains and magnetorotational
instability (MRI) turbulence in protoplanetary disks is analyzed. We use a
reduced system of coupled ordinary differential equations to represent the
interaction between the diffusion of grains and the inhibition of the MRI. The
coupled equations are styled on a Landau equation for the turbulence and a
Fokker-Planck equation for the diffusion. The turbulence-grain interaction is
probably most relevant near the outer edge of the disk's quiescent, or "dead"
zone. Settling is most pronounced near the midplane, where a high dust
concentration can self-consistently suppress the MRI. Under certain conditions,
however, grains can reach high altitudes, a result of some observational
interest. Finally, we show that the equilibrium solutions are linearly stable.Comment: 8 pages, 3 figures, accepted to MNRA
Structural network efficiency is associated with cognitive impairment in small-vessel disease.
To characterize brain network connectivity impairment in cerebral small-vessel disease (SVD) and its relationship with MRI disease markers and cognitive impairment.METHODS: A cross-sectional design applied graph-based efficiency analysis to deterministic diffusion tensor tractography data from 115 patients with lacunar infarction and leukoaraiosis and 50 healthy individuals. Structural connectivity was estimated between 90 cortical and subcortical brain regions and efficiency measures of resulting graphs were analyzed. Networks were compared between SVD and control groups, and associations between efficiency measures, conventional MRI disease markers, and cognitive function were tested.RESULTS: Brain diffusion tensor tractography network connectivity was significantly reduced in SVD: networks were less dense, connection weights were lower, and measures of network efficiency were significantly disrupted. The degree of brain network disruption was associated with MRI measures of disease severity and cognitive function. In multiple regression models controlling for confounding variables, associations with cognition were stronger for network measures than other MRI measures including conventional diffusion tensor imaging measures. A total mediation effect was observed for the association between fractional anisotropy and mean diffusivity measures and executive function and processing speed.CONCLUSIONS: Brain network connectivity in SVD is disturbed, this disturbance is related to disease severity, and within a mediation framework fully or partly explains previously observed associations between MRI measures and SVD-related cognitive dysfunction. These cross-sectional results highlight the importance of network disruption in SVD and provide support for network measures as a disease marker in treatment studies
- …