138,503 research outputs found

    2-BUTENEDIOIC ACID (E)-DIETHYL ESTER

    Get PDF

    Hoogsteen base pairs proximal and distal to echinomycin binding sites on DNA

    Get PDF
    Forms of the DNA double helix containing non-Watson-Crick base-pairing have been discovered recently based on x-ray diffraction analysis of quinoxaline antibiotic-oligonucleotide complexes. In an effort to find evidence for Hoogsteen base-pairing at quinoxaline-binding sites in solution, chemical "footprinting" (differential cleavage reactivity) of echinomycin bound to DNA restriction fragments was examined. We report that purines (A>G) in the first and/or fourth base-pair positions of occupied echinomycin-binding sites are hyperreactive to diethyl pyrocarbonate. The correspondence of the solid-state data and the sites of diethyl pyrocarbonate hyperreactivity suggests that diethyl pyrocarbonate may be a sensitive reagent for the detection of Hoogsteen base-pairing in solution. Moreover, a 12-base-pair segment of alternating A-T DNA, which is 6 base pairs away from the nearest strong echinomycin-binding site, is also hyperreactive to diethyl pyrocarbonate in the presence of echinomycin. This hyperreactive segment may be an altered form of right-handed DNA that is entirely Hoogsteen base-paired

    Trolox and ascorbic acid reduce direct and indirect oxidative stress in the IPEC-J2 cells, an in vitro model for the porcine gastrointestinal tract

    Get PDF
    Oxidative stress in the small intestinal epithelium is a major cause of barrier malfunction and failure to regenerate. This study presents a functional in vitro model using the porcine small intestinal epithelial cell line IPEC-J2 to examine the effects of oxidative stress and to estimate the antioxidant and regenerative potential of Trolox, ascorbic acid and glutathione monoethyl ester. Hydrogen peroxide and diethyl maleate affected the tight junction (zona occludens-1) distribution, significantly increased intracellular oxidative stress (CM-H(2)DCFDA) and decreased the monolayer integrity (transepithelial electrical resistance and FD-4 permeability), viability (neutral red) and wound healing capacity (scratch assay). Trolox (2 mM) and 1 mM ascorbic acid pre-treatment significantly reduced intracellular oxidative stress, increased wound healing capacity and reduced FD-4 permeability in oxidatively stressed IPEC-J2 cell monolayers. All antioxidant pre-treatments increased transepithelial electrical resistance and viability only in diethyl maleate-treated cells. Glutathione monoethyl ester (10 mM) pretreatment significantly decreased intracellular oxidative stress and monolayer permeability only in diethyl maleate-treated cells. These data demonstrate that the IPEC-J2 oxidative stress model is a valuable tool to screen antioxidants before validation in piglets

    Vapor–Liquid Equilibria of Nitrogen + Diethyl Ether and Nitrogen + 1,1,1,2,2,4,5,5,5-Nonafluoro-4-(trifluoromethyl)-3-pentanone by Experiment, Peng–Robinson and PC-SAFT Equations of State

    Get PDF
    The saturated liquid line of the systems nitrogen (N2) + diethyl ether and N2 + 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone (Novec 649) is measured along three isotherms, that is, 390, 420, and 450 K and 360, 390, and 420 K, respectively. The employed gas solubility apparatus, based on the synthetic method, allows to measure points up to the critical region of these mixtures. The experimental data are used to correlate the Peng–Robinson and PC-SAFT equations of state (EOS). For the parametrization of the system, N2 + diethyl ether the Peng–Robinson EOS is combined with the Huron–Vidal mixing rule and the non-random two-liquid (NRTL) excess Gibbs energy model; for the system N2 + Novec 649 the quadratic mixing rule is used

    1,1′-Fc(4-C6H4CO2Et)2and its unusual salt derivative withZ′ = 5,catena-[Na+]2[1,1′-Fc(4-C6H4CO2−)2]·0.6H2O [1,1′-Fc = (η5-(C5H4)2Fe]

    Get PDF
    The neutral diethyl 4,4'-(ferrocene-1,1'-diyl)dibenzoate, Fe[[eta]5-(C5H4)(4-C6H4CO2Et)]2 (I), yields (II) (following base hydrolysis) as the unusual complex salt poly[disodium bis[diethyl 4,4'-(ferrocene-1,1'-diyl)dibenzoate] 0.6-hydrate] or [Na+]2[Fe{[eta]5-(C5H4)-4-C6H4CO_2^-}2]·0.6H2O with Z' = 5. Compound (I) crystallizes in the triclinic system, space group P\bar 1, with two molecules having similar geometry in the asymmetric unit (Z' = 2). The salt complex (II) crystallizes in the orthorhombic system, space group Pbca, with the asymmetric unit comprising poly[decasodium pentakis[diethyl 4,4'-(ferrocene-1,1'-diyl)dibenzoate] trihydrate] or [Na+]10[Fe{[eta]5-(C5H4)-4-C6H4CO_2^-}2]5·3H2O. The five independent 1,1'-Fc[(4-C6H4CO2)-]2 dianions stack in an offset ladder (stepped) arrangement with the ten benzoates mutually oriented cisoid towards and bonded to a central layer comprising the ten Na+ ions and three water molecules [1,1'-Fc = [eta]5-(C5H4)2Fe]. The five dianions differ in the cisoid orientations of their pendant benzoate groups, with four having their -C6H4- groups mutually oriented at interplanar angles from 0.6 (3) to 3.2 (3)° (as [pi]...[pi] stacked C6 rings) and interacting principally with Na+ ions. The fifth dianion is distorted and opens up to an unprecedented -C6H4- interplanar angle of 18.6 (3)° through bending of the two 4-C6H4CO2 groups and with several ionic interactions involving the three water molecules (arranged as one-dimensional zigzag chains in the lattice). Overall packing comprises two-dimensional layers of Na+ cations coordinated mainly by the carboxylate O atoms, and one-dimensional water chains. The non-polar Fc(C6H4)2 groups are arranged perpendicular to the layers and mutually interlock through a series of efficient C-H...[pi] stacking contacts in a herringbone fashion to produce an overall segregation of polar and non-polar entities

    Flexible synthesis of polyfunctionalised 3-fluoropyrroles

    Get PDF
    An efficient and selective approach for the synthesis of polyfunctionalised 3-fluoropyrroles has been developed starting from commercial aldehydes. The methodology is concise, efficient and allows for the modular and systematic assembly of polysubstituted 3-fluoropyrroles. This synthesis provides an alternative and highly convergent strategy for the generation of these chemically and biologically important units

    Synthesis of Highly Stable 1,3-Diaryl-1H-1,2,3-triazol-5-ylidenes and Their Applications in Ruthenium-Catalyzed Olefin Metathesis

    Get PDF
    The formal cycloaddition between 1,3-diaza-2-azoniaallene salts and alkynes or alkyne equivalents provides an efficient synthesis of 1,3-diaryl-1H-1,2,3-triazolium salts, the direct precursors of 1,2,3-triazol-5-ylidenes. These N,N-diarylated mesoionic carbenes (MICs) exhibit enhanced stability in comparison to their alkylated counterparts. Experimental and computational results confirm that these MICs act as strongly electron-donating ligands. Their increased stability allows for the preparation of ruthenium olefin metathesis catalysts that are efficient in both ring-opening and ring-closing reactions

    Methods for synthesizing diethyl carbonate from ethanol and supercritical carbon dioxide by one-pot or two-step reactions in the presence of potassium carbonate

    Get PDF
    Carbon dioxide sequestration was studied by synthesizing diethyl carbonate (DEC) from ethanol and CO2 under supercritical conditions in the presence of potassium carbonate as a base. The co-reagent was ethyl iodide or a concentrated strong acid. This sequestration reaction occurs in two steps, which were studied separately and in a one-pot reaction. An organic-inorganic carbonate hybrid, potassium ethyl carbonate (PEC) is generated at the end of the first step. This intermediate was characterized and was found to be a target molecule for CO2 capture. Different co-reactants, such as ethyl iodide and concentrated strong Brönsted acid, were compared in the second step and used to investigate the reactivity of the hybrid. With ethyl iodide as the co-reactant, one-pot DEC synthesis gave higher yields (46%) than two-step production. The supercritical CO2 acts as a swelling solvent and compatibilizing agent in the reaction medium, favoring interactions between ethanol and CO2 and between PEC and ethyl iodide. The use of a phase transfer catalyst (PTC) increased DEC production (yield 51%) without increasing the amount of diethyl ether (DEE) produced as a by-product (yield 2%)

    Identification and quantification of cannabinol as a biomarker for local hemp retting in an ancient sedimentary record by HPTLC-ESI-MS

    Get PDF
    Cannabis products have been used in various fields of everyday life for many centuries, and applications in folk medicine and textile production have been well-known for many centuries. For traditional textile production, hemp fibers were extracted from the stems by water retting in stagnant or slow-moving waters. During this procedure, parts of the plant material‚ among them phytocannabinoids‚ are released into the water. Cannabinol (CBN) is an important degradation product of the predominant phytocannabinoids found in Cannabis species. Thus, it is an excellent indicator for present as well as ancient hemp water retting. In this study, we developed and validated a simple and fast method for the determination of CBN in sediment samples using high-performance thin-layer chromatography (HPTLC) combined with electrospray ionization mass spectrometry (ESI-MS), thereby testing different extraction and cleanup procedures‚ as well as various sorbents and solvents for planar chromatography. This method shows a satisfactory overall analytical performance with an average recovery rate of 73%. Our protocol enabled qualitative and quantitative analyses of CBN in samples of a bottom sediment core‚ having been obtained from a small lake in Northern India, where intense local retting of hemp was suggested in the past. The analyses showed a maximum CBN content in pollen zone 4 covering a depth range of 262–209 cm, dating from approximately 480 BCE to 1050 CE. These findings correlate with existing records of Cannabis-type pollen. Thus, the method we propose is a helpful tool to track ancient hemp retting activities
    corecore