152,374 research outputs found

    Metastable states of surface plasmon vacuum near the interface between metal and nonlinear dielectric

    Full text link
    Zero-point fluctuations of surface plasmon modes near the interface between metal and nonlinear dielectric are shown to produce a thin layer of altered dielectric constant near the interface. This effect may be sufficiently large to produce multiple metastable states of the surface plasmon vacuum.Comment: 4 pages, 2 figure

    Comparison of near-interface traps in Al2_2O3_3/4H-SiC and Al2_2O3_3/SiO2_2/4H-SiC structures

    Full text link
    Aluminum oxide (Al2O3) has been grown by atomic layer deposition on n-type 4H-SiC with and without a thin silicon dioxide (SiO2) intermediate layer. By means of Capacitance Voltage and Thermal Dielectric Relaxation Current measurements, the interface properties have been investigated. Whereas for the samples with an interfacial SiO2 layer the highest near-interface trap density is found at 0.3 eV below the conduction band edge, Ec, the samples with only the Al2O3 dielectric exhibit a nearly trap free region close to Ec. For the Al2O3/SiC interface, the highest trap density appears between 0.4 to 0.6 eV below Ec. The results indicate the possibility for SiC-based MOSFETs with Al2O3 as the gate dielectric layer in future high performance devices.Comment: 3 figures. Applied Physics Letters, accepted for publicatio

    Electric field inside a "Rossky cavity" in uniformly polarized water

    Full text link
    Electric field produced inside a solute by a uniformly polarized liquid is strongly affected by dipolar polarization of the liquid at the interface. We show, by numerical simulations, that the electric "cavity" field inside a hydrated non-polar solute does not follow the predictions of standard Maxwell's electrostatics of dielectrics. Instead, the field inside the solute tends, with increasing solute size, to the limit predicted by the Lorentz virtual cavity. The standard paradigm fails because of its reliance on the surface charge density at the dielectric interface determined by the boundary conditions of the Maxwell dielectric. The interface of a polar liquid instead carries a preferential in-plane orientation of the surface dipoles thus producing virtually no surface charge. The resulting boundary conditions for electrostatic problems differ from the traditional recipes, affecting the microscopic and macroscopic fields based on them. We show that relatively small differences in cavity fields propagate into significant differences in the dielectric constant of an ideal mixture. The slope of the dielectric increment of the mixture versus the solute concentration depends strongly on which polarization scenario at the interface is realized. A much steeper slope found in the case of Lorentz polarization also implies a higher free energy penalty for polarizing such mixtures.Comment: 9 pages, 8 figure
    • …
    corecore