5,168 research outputs found

    Kinetic and ion pairing contributions in the dielectric spectra of electrolyte aqueous solutions

    Full text link
    Understanding dielectric spectra can reveal important information about the dynamics of solvents and solutes from the dipolar relaxation times down to electronic ones. In the late 1970s, Hubbard and Onsager predicted that adding salt ions to a polar solution would result in a reduced dielectric permittivity that arises from the unexpected tendency of solvent dipoles to align opposite to the applied field. So far, this effect has escaped an experimental verification, mainly because of the concomitant appearance of dielectric saturation from which the Hubbard-Onsager decrement cannot be easily separated. Here we develop a novel non-equilibrium molecular dynamics simulation approach to determine this decrement accurately for the first time. Using a thermodynamic consistent all-atom force field we show that for an aqueous solution containing sodium chloride around 4.8 Mol/l, this effect accounts for 12\% of the total dielectric permittivity. The dielectric decrement can be strikingly different if a less accurate force field for the ions is used. Using the widespread GROMOS parameters, we observe in fact an {\it increment} of the dielectric permittivity rather than a decrement. We can show that this increment is caused by ion pairing, introduced by a too low dispersion force, and clarify the microscopic connection between long-living ion pairs and the appearance of specific features in the dielectric spectrum of the solution

    Differential capacitance of the electric double layer: The interplay between ion finite size and dielectric decrement

    Full text link
    We study the electric double layer by combining the effects of ion finite size and dielectric decrement. At high surface potential, both mechanisms can cause saturation of the counter-ion concentration near a charged surface. The modified Grahame equation and differential capacitance are derived analytically for a general expression of a permittivity epsilon(n) that depends on the local ion concentration, n, and under the assumption that the co-ions are fully depleted from the surface. The concentration at counter-ion saturation is found for any epsilon(n), and a criterion predicting which of the two mechanisms (steric vs. dielectric decrement) is the dominant one is obtained. At low salinity, the differential capacitance as function of surface potential has two peaks (so-called camel-shape). Each of these two peaks is connected to a saturation of counter-ion concentration caused either by dielectric decrement or by their finite size. Because these effects depend mainly on the counter-ion concentration at the surface proximity, for opposite surface-potential polarity either the cations or anions play the role of counter-ions, resulting in an asymmetric camel-shape. At high salinity, we obtain and analyze the crossover in the differential capacitance from a double-peak shape to a uni-modal one. Finally, several nonlinear models of the permittivity decrement are considered, and we predict that the concentration at dielectrophoretic saturation shifts to higher concentration than those obtained by the linear decrement model

    Ion-Ion and Ion-Neutral Interactions in Solution and Measurements of Dielectric Constants

    Get PDF
    Data on dielectric constants of electrolyte solutions are used to evaluate directly the r^(−4) term in the asymptotic expression for the free energy of interaction of two ions in solution for large separation distance r. Use is made of the fact that for large separations each ion is in a uniform field due to the other, and that information about ions in uniform fields is obtainable from measurements of dielectric constants. For a Z:Z electrolyte, for example, the r^(−4) term is found to be Z^2e^2δ/8πϵ_0r^4, assuming the effect of overlapping solvent structures to be of shorter range; ϵ_0 is the dielectric constant of the solvent and δ is the measured decrement in dielectric constant per unit concentration of added electrolyte. A similar result obtained when one of the particles is uncharged, δ now referring to the decrement observed when the neutral is added to solution. Typical values of the term are given for various substances using the data on δ's. This determination of the r^(−4) term permits some evaluation of ion—image force theories
    corecore