27,862 research outputs found
The non-centrosymmetric lamellar phase in blends of ABC triblock and ac diblock copolymers
The phase behaviour of blends of ABC triblock and ac diblock copolymers is
examined using self-consistent field theory. Several equilibrium lamellar
structures are observed, depending on the volume fraction of the diblocks,
phi_2, the monomer interactions, and the degrees of polymerization of the
copolymers. For segregations just above the order-disorder transition the
triblocks and diblocks mix together to form centrosymmetric lamellae. As the
segregation is increased the triblocks and diblocks spatially separate either
by macrophase-separating, or by forming a non-centrosymmetric (NCS) phase of
alternating layers of triblock and diblock (...ABCcaABCca...). The NCS phase is
stable over a narrow region near phi_2=0.4. This region is widest near the
critical point on the phase coexistence curve and narrows to terminate at a
triple point at higher segregation. Above the triple point there is two-phase
coexistence between almost pure triblock and diblock phases. The theoretical
phase diagram is consistent with experiments.Comment: 9 pages, 8 figures, submitted to Macromolecule
Recommended from our members
Surface structure of thin asymmetric PS-b-PMMA diblock copolymers investigated by atomic force microscopy
Asymmetric poly(styrene-b-methyl methacrylate) (PS-b-PMMA) diblock copolymers of molecular weight M-n = 29,700g mol(-1) (M-PS = 9300 g mol(-1) M-PMMA = 20,100 g mol(-1), PD = 1.15, chi(PS) = 0.323, chi(PMMA) = 0.677) and M-n = 63,900 g mol(-1) (M-PS = 50,500 g mol(-1), M-PMMA = 13,400 g mol(-1), PD = 1.18, chi(PS) = 0.790, chi(PMMA) = 0.210) were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. Atomic force microscopy (AFM) was used to investigate the surface structure of thin films, prepared by spin-coating the diblock copolymers on a silicon substrate. We show that the nanostructure of the diblock copolymer depends on the molecular weight and volume fraction of the diblock copolymers. We observed a perpendicular lamellar structure for the high molar mass sample and a hexagonal-packed cylindrical patterning for the lower molar mass one. Small-angle X-ray scattering investigation of these samples without annealing did not reveal any ordered structure. Annealing of PS-b-PMMA samples at 160 degrees C for 24 h led to a change in surface structure
Diblock copolymer thin films: Parallel and perpendicular lamellar phases in the weak segregation limit
We study morphologies of thin-film diblock copolymers between two flat and
parallel walls. The study is restricted to the weak segregation regime below
the order-disorder transition temperature. The deviation from perfect lamellar
shape is calculated for phases which are perpendicular and parallel to the
walls. We examine the undulations of the inter material dividing surface and
its angle with the walls, and find that the deviation from its unperturbed
position can be much larger than in the strong segregation case. Evaluating the
weak segregation stability of the lamellar phases, it is shown that a surface
interaction, which is quadratic in the monomer concentration, favors the
perpendicular lamellar phase. In particular, the degeneracy between
perpendicular and unfrustrated parallel lamellar phases for walls without a
preferential adsorption is removed.Comment: 10 pages, 9 figures, submitted to European Physical Journal
Self-consistent-field calculations of proteinlike incorporations in polyelectrolyte complex micelles
Self-consistent field theory is applied to model the structure and stability of polyelectrolyte complex micelles with incorporated protein (molten globule) molecules in the core. The electrostatic interactions that drive the micelle formation are mimicked by nearest-neighbor interactions using Flory-Huggins X parameters. The strong qualitative comparison with experimental data proves that the Flory-Huggins approach is reasonable. The free energy of insertion of a proteinlike molecule into the micelle is nonmonotonic: there is (i) a small repulsion when the protein is inside the corona; the height of the insertion barrier is determined by the local osmotic pressure and the elastic deformation of the core, (ii) a local minimum occurs when the protein molecule is at the core-corona interface; the depth (a few kBT's) is related to the interfacial tension at the core-corona interface and (iii) a steep repulsion (several kBT) when part of the protein molecule is dragged into the core. Hence, the protein molecules reside preferentially at the core-corona interface and the absorption as well as the release of the protein molecules has annealed rather than quenched characteristics. Upon an increase of the ionic strength it is possible to reach a critical micellization ionic (CMI) strength. With increasing ionic strength the aggregation numbers decrease strongly and only few proteins remain associated with the micelles near the CM
Fluctuation effects in the theory of microphase separation of diblock copolymers in the presence of an electric field
We generalize the Fredrickson-Helfand theory of the microphase separation in
symmetric diblock copolymer melts by taking into account the influence of a
time-independent homogeneous electric field on the composition fluctuations
within the self-consistent Hartree approximation. We predict that electric
fields suppress composition fluctuations, and consequently weaken the
first-order transition. In the presence of an electric field the critical
temperature of the order-disorder transition is shifted towards its mean-field
value. The collective structure factor in the disordered phase becomes
anisotropic in the presence of the electric field. Fluctuational modulations of
the order parameter along the field direction are strongest suppressed. The
latter is in accordance with the parallel orientation of the lamellae in the
ordered state.Comment: 16 page
Phase diagram for diblock copolymer melts under cylindrical confinement
We extensively study the phase diagram of a diblock copolymer melt confined
in a cylindrical nanopore using real-space self-consistent mean-field theory.
We discover a rich variety of new two-dimensional equilibrium structures that
have no analog in the unconfined system. These include non-hexagonally
coordinated cylinder phases and structures intermediate between lamellae and
cylinders. We map the stability regions and phase boundaries for all the
structures we find. As the pore radius is decreased, the pore accommodates
fewer cylindrical domains and structural transitions occur as cylinders are
eliminated. Our results are consistent with experiments, but we also predict
phases yet to be observed.Comment: 12 pages, 3 figures. submitted to Physical Review Letter
Easy orientation of diblock copolymers on self-assembled monolayers using UV irradiation
A simple method based on UV/ozone treatment is proposed to control the
surface energy of dense grafted silane layers for orientating block copolymer
mesophases. Our method allows one to tune the surface energy down to a fraction
of a mN/m. We show that related to the surface, perpendicular orientation of a
lamellar phase of a PS-PMMA diblock copolymer (neutral surface) is obtained for
a critical surface energy of 23.9-25.7 mN/m. Perpendicular cylinders are
obtained for 24.6 mN/m and parallel cylinders for 26.8 mN/m.Comment: 3 figures, 1 tabl
Origins of elastic properties in ordered nanocomposites
We predict a diblock copolymer melt in the lamellar phase with added
spherical nanoparticles that have an affinity for one block to have a lower
tensile modulus than a pure diblock copolymer system. This weakening is due to
the swelling of the lamellar domain by nanoparticles and the displacement of
polymer by elastically inert fillers. Despite the overall decrease in the
tensile modulus of a polydomain sample, the shear modulus for a single domain
increases dramatically
Phase Behavior of Melts of Diblock-Copolymers with One Charged Block
In this work we investigated the phase behavior of melts of block-copolymers
with one charged block by means of dissipative particle dynamics with explicit
electrostatic interactions. We assumed that all the Flory-Huggins \c{hi}
parameters were equal to 0 and showed that the charge correlation attraction
solely can cause microphase separation with long-range order; a phase diagram
was constructed by varying the volume fraction of the uncharged block and the
electrostatic interaction parameter {\lambda}. The obtained phase diagram was
compared to the phase diagram of corresponding neutral diblock-copolymers.
Surprisingly, the differences between these phase diagrams are rather subtle;
the same phases are observed, and the positions of the ODT points are similar
if the {\lambda}-parameter is considered as an "effective" \c{hi}-parameter.
Next, we studied the position of the ODT for lamellar structure depending on
the chain length N. It turned out that while for the uncharged
diblock-copolymer the product \c{hi}crN was almost independent of N, for the
diblock-copolymers with one charged block we observed a significant increase in
{\lambda}crN upon increasing N. It can be attributed to the fact that the
counterion entropy prevents the formation of ordered structures. This was
supported by studying the ODT in diblock-copolymers with charged blocks and
counterions cross-linked to the charged monomer units. The ODT for such systems
was observed at significantly lower values of {\lambda} with the difference
being more pronounced at longer chain lengths N. The diffusion of counterions
in the obtained ordered structures was studied and compared to the case of a
system with the same number of charged groups but homogeneous structure; the
diffusion coefficient in a direction in the lamellar plane was found to be
higher than in any direction in homogeneous structure
- …
