27,862 research outputs found

    The non-centrosymmetric lamellar phase in blends of ABC triblock and ac diblock copolymers

    Full text link
    The phase behaviour of blends of ABC triblock and ac diblock copolymers is examined using self-consistent field theory. Several equilibrium lamellar structures are observed, depending on the volume fraction of the diblocks, phi_2, the monomer interactions, and the degrees of polymerization of the copolymers. For segregations just above the order-disorder transition the triblocks and diblocks mix together to form centrosymmetric lamellae. As the segregation is increased the triblocks and diblocks spatially separate either by macrophase-separating, or by forming a non-centrosymmetric (NCS) phase of alternating layers of triblock and diblock (...ABCcaABCca...). The NCS phase is stable over a narrow region near phi_2=0.4. This region is widest near the critical point on the phase coexistence curve and narrows to terminate at a triple point at higher segregation. Above the triple point there is two-phase coexistence between almost pure triblock and diblock phases. The theoretical phase diagram is consistent with experiments.Comment: 9 pages, 8 figures, submitted to Macromolecule

    Diblock copolymer thin films: Parallel and perpendicular lamellar phases in the weak segregation limit

    Full text link
    We study morphologies of thin-film diblock copolymers between two flat and parallel walls. The study is restricted to the weak segregation regime below the order-disorder transition temperature. The deviation from perfect lamellar shape is calculated for phases which are perpendicular and parallel to the walls. We examine the undulations of the inter material dividing surface and its angle with the walls, and find that the deviation from its unperturbed position can be much larger than in the strong segregation case. Evaluating the weak segregation stability of the lamellar phases, it is shown that a surface interaction, which is quadratic in the monomer concentration, favors the perpendicular lamellar phase. In particular, the degeneracy between perpendicular and unfrustrated parallel lamellar phases for walls without a preferential adsorption is removed.Comment: 10 pages, 9 figures, submitted to European Physical Journal

    Self-consistent-field calculations of proteinlike incorporations in polyelectrolyte complex micelles

    Get PDF
    Self-consistent field theory is applied to model the structure and stability of polyelectrolyte complex micelles with incorporated protein (molten globule) molecules in the core. The electrostatic interactions that drive the micelle formation are mimicked by nearest-neighbor interactions using Flory-Huggins X parameters. The strong qualitative comparison with experimental data proves that the Flory-Huggins approach is reasonable. The free energy of insertion of a proteinlike molecule into the micelle is nonmonotonic: there is (i) a small repulsion when the protein is inside the corona; the height of the insertion barrier is determined by the local osmotic pressure and the elastic deformation of the core, (ii) a local minimum occurs when the protein molecule is at the core-corona interface; the depth (a few kBT's) is related to the interfacial tension at the core-corona interface and (iii) a steep repulsion (several kBT) when part of the protein molecule is dragged into the core. Hence, the protein molecules reside preferentially at the core-corona interface and the absorption as well as the release of the protein molecules has annealed rather than quenched characteristics. Upon an increase of the ionic strength it is possible to reach a critical micellization ionic (CMI) strength. With increasing ionic strength the aggregation numbers decrease strongly and only few proteins remain associated with the micelles near the CM

    Fluctuation effects in the theory of microphase separation of diblock copolymers in the presence of an electric field

    Full text link
    We generalize the Fredrickson-Helfand theory of the microphase separation in symmetric diblock copolymer melts by taking into account the influence of a time-independent homogeneous electric field on the composition fluctuations within the self-consistent Hartree approximation. We predict that electric fields suppress composition fluctuations, and consequently weaken the first-order transition. In the presence of an electric field the critical temperature of the order-disorder transition is shifted towards its mean-field value. The collective structure factor in the disordered phase becomes anisotropic in the presence of the electric field. Fluctuational modulations of the order parameter along the field direction are strongest suppressed. The latter is in accordance with the parallel orientation of the lamellae in the ordered state.Comment: 16 page

    Phase diagram for diblock copolymer melts under cylindrical confinement

    Full text link
    We extensively study the phase diagram of a diblock copolymer melt confined in a cylindrical nanopore using real-space self-consistent mean-field theory. We discover a rich variety of new two-dimensional equilibrium structures that have no analog in the unconfined system. These include non-hexagonally coordinated cylinder phases and structures intermediate between lamellae and cylinders. We map the stability regions and phase boundaries for all the structures we find. As the pore radius is decreased, the pore accommodates fewer cylindrical domains and structural transitions occur as cylinders are eliminated. Our results are consistent with experiments, but we also predict phases yet to be observed.Comment: 12 pages, 3 figures. submitted to Physical Review Letter

    Easy orientation of diblock copolymers on self-assembled monolayers using UV irradiation

    Full text link
    A simple method based on UV/ozone treatment is proposed to control the surface energy of dense grafted silane layers for orientating block copolymer mesophases. Our method allows one to tune the surface energy down to a fraction of a mN/m. We show that related to the surface, perpendicular orientation of a lamellar phase of a PS-PMMA diblock copolymer (neutral surface) is obtained for a critical surface energy of 23.9-25.7 mN/m. Perpendicular cylinders are obtained for 24.6 mN/m and parallel cylinders for 26.8 mN/m.Comment: 3 figures, 1 tabl

    Origins of elastic properties in ordered nanocomposites

    Get PDF
    We predict a diblock copolymer melt in the lamellar phase with added spherical nanoparticles that have an affinity for one block to have a lower tensile modulus than a pure diblock copolymer system. This weakening is due to the swelling of the lamellar domain by nanoparticles and the displacement of polymer by elastically inert fillers. Despite the overall decrease in the tensile modulus of a polydomain sample, the shear modulus for a single domain increases dramatically

    Phase Behavior of Melts of Diblock-Copolymers with One Charged Block

    Get PDF
    In this work we investigated the phase behavior of melts of block-copolymers with one charged block by means of dissipative particle dynamics with explicit electrostatic interactions. We assumed that all the Flory-Huggins \c{hi} parameters were equal to 0 and showed that the charge correlation attraction solely can cause microphase separation with long-range order; a phase diagram was constructed by varying the volume fraction of the uncharged block and the electrostatic interaction parameter {\lambda}. The obtained phase diagram was compared to the phase diagram of corresponding neutral diblock-copolymers. Surprisingly, the differences between these phase diagrams are rather subtle; the same phases are observed, and the positions of the ODT points are similar if the {\lambda}-parameter is considered as an "effective" \c{hi}-parameter. Next, we studied the position of the ODT for lamellar structure depending on the chain length N. It turned out that while for the uncharged diblock-copolymer the product \c{hi}crN was almost independent of N, for the diblock-copolymers with one charged block we observed a significant increase in {\lambda}crN upon increasing N. It can be attributed to the fact that the counterion entropy prevents the formation of ordered structures. This was supported by studying the ODT in diblock-copolymers with charged blocks and counterions cross-linked to the charged monomer units. The ODT for such systems was observed at significantly lower values of {\lambda} with the difference being more pronounced at longer chain lengths N. The diffusion of counterions in the obtained ordered structures was studied and compared to the case of a system with the same number of charged groups but homogeneous structure; the diffusion coefficient in a direction in the lamellar plane was found to be higher than in any direction in homogeneous structure
    corecore