1,772,717 research outputs found
CPD’S PRE-ELECTION POLICY BRIEFS: Results from the Identification Exercise
The paper documents various consultations conducted by CPD during the last quarter of the year 2000 to identify specific issues to be taken up for the purpose of preparing the pre-election policy briefs. The paper provides suggestions to improve the capacity of civil society to contribute to the policy debate and to formulate ideas for the national political process in the run-up to, and immediately after, the parliamentary elections due in 2001.Election, Policy Briefs, Bangladeshg
Concluding dialogue
This is a chapter in a book with the overall description: This is a critical time in design. Concepts and practices of design are changing in response to historical developments in the modes of industrial design production and consumption. Indeed, the imperative of more sustainable development requires profound reconsideration of design today. Theoretical foundations and professional definitions are at stake, with consequences for institutions such as museums and universities as well as for future practitioners. This is ‘critical’ on many levels, from the urgent need to address societal and environmental issues to the reflexivity required to think and do design differently
Generic dialogue modeling for multi-application dialogue systems
We present a novel approach to developing interfaces for multi-application dialogue systems. The targeted interfaces allow transparent switching between a large number of applications within one system. The approach, based on the Rapid Dialogue Prototyping Methodology (RDPM) and the Vector Space model techniques from Information Retrieval, is composed of three main steps: (1) producing finalized dia
logue models for applications using the RDPM, (2) designing an application interaction hierarchy, and (3) navigating between the applications based on the user's application of interest
Dialogue with computers: dialogue games in action
With the advent of digital personal assistants for mobile devices, systems that are marketed as engaging in (spoken) dialogue have reached a wider public than ever before. For a student of dialogue, this raises the question to what extent such systems are genuine dialogue partners. In order to address this question, this study proposes to use the concept of a dialogue game as an analytical tool. Thus, we reframe the question as asking for the dialogue games that such systems play. Our analysis, as applied to a number of landmark systems and illustrated with dialogue extracts, leads to a fine-grained classification of such systems. Drawing on this analysis, we propose that the uptake of future generations of more powerful dialogue systems will depend on whether they are self-validating. A self-validating dialogue system can not only talk and do things, but also discuss the why of what it says and does, and learn from such discussions
A tractable DDN-POMDP Approach to Affective Dialogue Modeling for General Probabilistic Frame-based Dialogue Systems
We propose a new approach to developing a tractable affective dialogue model for general probabilistic frame-based dialogue systems. The dialogue model, based on the Partially Observable Markov Decision Process (POMDP) and the Dynamic Decision Network (DDN) techniques, is composed of two main parts, the slot level dialogue manager and the global dialogue manager. Our implemented dialogue manager prototype can handle hundreds of slots; each slot might have many values. A first evaluation of the slot level dialogue manager (1-slot case) showed that with a 95% confidence level the DDN-POMDP dialogue strategy outperforms three simple handcrafted dialogue strategies when the user's action error is induced by stress
Sequential Dialogue Context Modeling for Spoken Language Understanding
Spoken Language Understanding (SLU) is a key component of goal oriented
dialogue systems that would parse user utterances into semantic frame
representations. Traditionally SLU does not utilize the dialogue history beyond
the previous system turn and contextual ambiguities are resolved by the
downstream components. In this paper, we explore novel approaches for modeling
dialogue context in a recurrent neural network (RNN) based language
understanding system. We propose the Sequential Dialogue Encoder Network, that
allows encoding context from the dialogue history in chronological order. We
compare the performance of our proposed architecture with two context models,
one that uses just the previous turn context and another that encodes dialogue
context in a memory network, but loses the order of utterances in the dialogue
history. Experiments with a multi-domain dialogue dataset demonstrate that the
proposed architecture results in reduced semantic frame error rates.Comment: 8 + 2 pages, Updated 10/17: Updated typos in abstract, Updated 07/07:
Updated Title, abstract and few minor change
- …
