3,587,767 research outputs found
The String Deviation Equation
The relative motion of many particles can be described by the geodesic
deviation equation. This can be derived from the second covariant variation of
the point particle's action. It is shown that the second covariant variation of
the string action leads to a string deviation equation.Comment: 18 pages, some small changes, no tables or diagrams, LaTex2
Convergence of large deviation estimators
We study the convergence of statistical estimators used in the estimation of
large deviation functions describing the fluctuations of equilibrium,
nonequilibrium, and manmade stochastic systems. We give conditions for the
convergence of these estimators with sample size, based on the boundedness or
unboundedness of the quantity sampled, and discuss how statistical errors
should be defined in different parts of the convergence region. Our results
shed light on previous reports of 'phase transitions' in the statistics of free
energy estimators and establish a general framework for reliably estimating
large deviation functions from simulation and experimental data and identifying
parameter regions where this estimation converges.Comment: 13 pages, 6 figures. v2: corrections focusing the paper on large
deviations; v3: minor corrections, close to published versio
Transport Coefficients from Large Deviation Functions
We describe a method for computing transport coefficients from the direct
evaluation of large deviation function. This method is general, relying on only
equilibrium fluctuations, and is statistically efficient, employing trajectory
based importance sampling. Equilibrium fluctuations of molecular currents are
characterized by their large deviation functions, which is a scaled cumulant
generating function analogous to the free energy. A diffusion Monte Carlo
algorithm is used to evaluate the large deviation functions, from which
arbitrary transport coefficients are derivable. We find significant statistical
improvement over traditional Green-Kubo based calculations. The systematic and
statistical errors of this method are analyzed in the context of specific
transport coefficient calculations, including the shear viscosity, interfacial
friction coefficient, and thermal conductivity.Comment: 11 pages, 5 figure
Numerical computation of rare events via large deviation theory
An overview of rare events algorithms based on large deviation theory (LDT)
is presented. It covers a range of numerical schemes to compute the large
deviation minimizer in various setups, and discusses best practices, common
pitfalls, and implementation trade-offs. Generalizations, extensions, and
improvements of the minimum action methods are proposed. These algorithms are
tested on example problems which illustrate several common difficulties which
arise e.g. when the forcing is degenerate or multiplicative, or the systems are
infinite-dimensional. Generalizations to processes driven by non-Gaussian
noises or random initial data and parameters are also discussed, along with the
connection between the LDT-based approach reviewed here and other methods, such
as stochastic field theory and optimal control. Finally, the integration of
this approach in importance sampling methods using e.g. genealogical algorithms
is explored
- …
