1,649 research outputs found

    Persistent detwinning of iron pnictides by small magnetic fields

    Full text link
    Our comprehensive study on EuFe2_2As2_2 reveals a dramatic reduction of magnetic detwinning fields compared to other AFe2_2As2_2 (A = Ba, Sr, Ca) iron pnictides by indirect magneto-elastic coupling of the Eu2+^{2+} ions. We find that only 0.1T are sufficient for persistent detwinning below the local Eu2+^{2+} ordering; above TEuT_\text{Eu} = 19K, higher fields are necessary. Even after the field is switched off, a significant imbalance of twin domains remains constant up to the structural and electronic phase transition (190K). This persistent detwinning provides the unique possibility to study the low temperature electronic in-plane anisotropy of iron pnictides without applying any symmetrybreaking external force.Comment: accepted by Physical Review Letter

    Electronic nematic correlations in the stress free tetragonal state of BaFe2βˆ’x_{2-x}Nix_{x}As2_{2}

    Full text link
    We use transport and neutron scattering to study electronic, structural, and magnetic properties of the electron-doped BaFe2βˆ’x_{2-x}Nix_xAs2_2 iron pnictides in the external stress free detwinned state. Using a specially designed in-situ mechanical detwinning device, we demonstrate that the in-plane resistivity anisotropy observed in the uniaxial strained tetragonal state of BaFe2βˆ’x_{2-x}Nix_xAs2_2 below a temperature Tβˆ—T^\ast, previously identified as a signature of the electronic nematic phase, is also present in the stress free tetragonal phase below Tβˆ—βˆ—T^{\ast\ast} (<Tβˆ—<T^\ast). By carrying out neutron scattering measurements on BaFe2_2As2_2 and BaFe1.97_{1.97}Ni0.03_{0.03}As2_2, we argue that the resistivity anisotropy in the stress free tetragonal state of iron pnictides arises from the magnetoelastic coupling associated with antiferromagnetic order. These results thus indicate that the local lattice distortion and nematic spin correlations are responsible for the resistivity anisotropy in the tetragonal state of iron pnictides.Comment: 5 pages, 4 figure

    Microwave Conductivity due to Scattering from Extended Linear Defects in d-Wave Superconductors

    Full text link
    Recent microwave conductivity measurements of detwinned, high-purity, slightly overdoped YBa2_{2}Cu3_{3}O6.993_{6.993} crystals reveal a linear temperature dependence and a near-Drude lineshape for temperatures between 1 and 20 K and frequencies ranging from 1 to 75 GHz. Prior theoretical work has shown that simple models of scattering by point defects (impurities) in d-wave superconductors are inconsistent with these results. It has therefore been suggested that scattering by extended defects such as twin boundary remnants, left over from the detwinning process, may also be important. We calculate the self-energy and microwave conductivity in the self-consistent Born approximation (including vertex corrections) for a d-wave superconductor in the presence of scattering from extended linear defects. We find that in the experimentally relevant limit (Ξ©,1/Ο„β‰ͺTβ‰ͺΞ”0\Omega, 1/\tau \ll T \ll \Delta_{0}), the resulting microwave conductivity has a linear temperature dependence and a near-Drude frequency dependence that agrees well with experiment.Comment: 13 pages, 7 figure

    Uniaxial strain detwinning of CaFe2As2 and BaFe2As2: optical and transport study

    Full text link
    TThe parent compounds of iron-arsenide superconductors, AAFe2_{2}As2_{2} (AA=Ca, Sr, Ba), undergo a tetragonal to orthorhombic structural transition at a temperature TTOT_{\mathrm{TO}} in the range 135 to 205K depending on the alkaline earth element. Below TTOT_{\mathrm{TO}} the free standing crystals split into equally populated structural domains, which mask intrinsic, in-plane, anisotropic properties of the materials. Here we demonstrate a way of mechanically detwinning CaFe2_{2}As2_{2} and BaFe2_{2}As2_{2}. The detwinning is nearly complete, as demonstrated by polarized light imaging and synchrotron XX-ray measurements, and reversible, with twin pattern restored after strain release. Electrical resistivity measurements in the twinned and detwinned states show that resistivity, ρ\rho, decreases along the orthorhombic aoa_{o}-axis but increases along the orthorhombic bob_{o}-axis in both compounds. Immediately below TTOT_{\mathrm{TO}} the ratio ρbo/ρao\rho_{bo}/ \rho_{ao} = 1.2 and 1.5 for Ca and Ba compounds, respectively. Contrary to CaFe2_{2}As2_{2}, BaFe2_{2}As2_{2} reveals an anisotropy in the nominally tetragonal phase, suggesting that either fluctuations play a larger role above TTOT_{\mathrm{TO}} in BaFe2_{2}As2_{2} than in CaFe2_{2}As2_{2}, or that there is a higher temperature crossover or phase transition.Comment: extended versio

    Effect of uniaxial strain on the structural and magnetic phase transitions in BaFe2_2As2_2

    Full text link
    We report neutron scattering experiments probing the influence of uniaxial strain on both the magnetic and structural order parameters in the parent iron pnictide compound, BaFe2_2As2_2. Our data show that modest strain fields along the in-plane orthorhombic b-axis can affect significant changes in phase behavior simultaneous to the removal of structural twinning effects. As a result, we demonstrate in BaFe2_2As2_2 samples detwinned via uniaxial strain that the in-plane C4_4 symmetry is broken by \textit{both} the structural lattice distortion \textit{and} long-range spin ordering at temperatures far above the nominal (strain-free), phase transition temperatures. Surprising changes in the magnetic order parameter of this system under relatively small strain fields also suggest the inherent presence of magnetic domains fluctuating above the strain-free ordering temperature in this material.Comment: 4 pages, 3 figure
    • …
    corecore