345,684 research outputs found
Characterization of a dense aperture array for radio astronomy
EMBRACE@Nancay is a prototype instrument consisting of an array of 4608
densely packed antenna elements creating a fully sampled, unblocked aperture.
This technology is proposed for the Square Kilometre Array and has the
potential of providing an extremely large field of view making it the ideal
survey instrument. We describe the system,calibration procedures, and results
from the prototype.Comment: 17 pages, accepted for publication in A&
High performance architecture design for large scale fibre-optic sensor arrays using distributed EDFAs and hybrid TDM/DWDM
A distributed amplified dense wavelength division multiplexing (DWDM) array architecture is presented for interferometric fibre optic sensor array systems. This architecture employs a distributed erbium doped fibre amplifier (EDFA) scheme to decrease the array insertion loss, and employs time division multiplexing (TDM) at each wavelength to increase the number of sensors that can be supported. The first experimental demonstration of this system is reported including results which show the potential for multiplexing and interrogating up to 4096 sensors using a single telemetry fibre pair with good system performance. The number can be increased to 8192 by using dual pump sources
Measurement of Flow Characteristics in a Bubbling Fluidized Bed Using Electrostatic Sensor Arrays
Fluidized beds are widely applied in a range of industrial processes. In order to maintain the efficient operation of a fluidized bed, the flow parameters in the bed should be monitored continuously. In this paper, electrostatic sensor arrays are used to measure the flow characteristics in a bubbling fluidized bed. In order to investigate the electrostatic charge distribution and the flow dynamics of solid particles in the dense region, time and frequency domain analysis of the electrostatic signals is conducted. In addition, the correlation velocities and weighted average velocity of Geldart A particles in the dense and transit regions are calculated, and the flow dynamics of Geldart A and D particles in the dense and transit regions are compared. Finally, the influence of liquid antistatic agents on the performance of the electrostatic sensor array is investigated. According to the experimental results, it is proved that the flow characteristics in the dense and transit regions of a bubbling fluidized bed can be measured using electrostatic sensor arrays
Wave Propagation in Nonlocally Coupled Oscillators With Noise
The onset of undamped wave propagation in noisy self-oscillatory media is
identified with a Hopf bifurcation of the corresponding effective dynamical
system obtained by properly renormalizing the effects of noise. We illustrate
this fact on a dense array of nonlocally coupled phase oscillators for which a
mean-field idea works exactly in deriving such effective dynamical equations.Comment: 4 page
Dense gas in IRAS 20343+4129: an ultracompact HII region caught in the act of creating a cavity
The intermediate- to high-mass star-forming region IRAS 20343+4129 is an
excellent laboratory to study the influence of high- and intermediate-mass
young stellar objects on nearby starless dense cores, and investigate for
possible implications in the clustered star formation process. We present 3 mm
observations of continuum and rotational transitions of several molecular
species (C2H, c-C3H2, N2H+, NH2D) obtained with the Combined Array for Research
in Millimetre-wave Astronomy, as well as 1.3 cm continuum and NH3 observations
carried out with the Very Large Array, to reveal the properties of the dense
gas. We confirm undoubtedly previous claims of an expanding cavity created by
an ultracompact HII region associated with a young B2 zero-age main sequence
(ZAMS) star. The dense gas surrounding the cavity is distributed in a filament
that seems squeezed in between the cavity and a collimated outflow associated
with an intermediate-mass protostar. We have identified 5 millimeter continuum
condensations in the filament. All of them show column densities consistent
with potentially being the birthplace of intermediate- to high-mass objects.
These cores appear different from those observed in low-mass clustered
environments in sereval observational aspects (kinematics, temperature,
chemical gradients), indicating a strong influence of the most massive and
evolved members of the protocluster. We suggest a possible scenario in which
the B2 ZAMS star driving the cavity has compressed the surrounding gas,
perturbed its properties and induced the star formation in its immediate
surroundings.Comment: 17 pages, 13 figures. Accepted for publication in Monthly Notices of
the Royal Astronomical Society (Main Journal
- …
