3,000,405 research outputs found
Quantum diffusion in liquid water from ring polymer molecular dynamics
We have used the ring polymer molecular-dynamics method to study the translational and orientational motions in an extended simple point charge model of liquid water under ambient conditions. We find, in agreement with previous studies, that quantum-mechanical effects increase the self-diffusion coefficient D and decrease the relaxation times around the principal axes of the water molecule by a factor of around 1.5. These results are consistent with a simple Stokes-Einstein picture of the molecular motion and suggest that the main effect of the quantum fluctuations is to decrease the viscosity of the liquid by about a third. We then go on to consider the system-size scaling of the calculated self-diffusion coefficient and show that an appropriate extrapolation to the limit of infinite system size increases D by a further factor of around 1.3 over the value obtained from a simulation of a system containing 216 water molecules. These findings are discussed in light of the widespread use of classical molecular-dynamics simulations of this sort of size to model the dynamics of aqueous systems
A study of random laser modes in disordered photonic crystals
We studied lasing modes in a disordered photonic crystal. The scaling of the
lasing threshold with the system size depends on the strength of disorder. For
sufficiently large size, the minimum of the lasing threshold occurs at some
finite value of disorder strength. The highest random cavity quality factor was
comparable to that of an intentionally introduced single defect. At the
minimum, the lasing threshold showed a super-exponential decrease with the size
of the system. We explain it through a migration of the lasing mode frequencies
toward the photonic bandgap center, where the localization length takes the
minimum value. Random lasers with exponentially low thresholds are predicted.Comment: 4 pages, 4 figure
Elastic collapse in disordered isostatic networks
Isostatic networks are minimally rigid and therefore have, generically,
nonzero elastic moduli. Regular isostatic networks have finite moduli in the
limit of large sizes. However, numerical simulations show that all elastic
moduli of geometrically disordered isostatic networks go to zero with system
size. This holds true for positional as well as for topological disorder. In
most cases, elastic moduli decrease as inverse power-laws of system size. On
directed isostatic networks, however, of which the square and cubic lattices
are particular cases, the decrease of the moduli is exponential with size. For
these, the observed elastic weakening can be quantitatively described in terms
of the multiplicative growth of stresses with system size, giving rise to bulk
and shear moduli of order exp{-bL}. The case of sphere packings, which only
accept compressive contact forces, is considered separately. It is argued that
these have a finite bulk modulus because of specific correlations in contact
disorder, introduced by the constraint of compressivity. We discuss why their
shear modulus, nevertheless, is again zero for large sizes. A quantitative
model is proposed that describes the numerically measured shear modulus, both
as a function of the loading angle and system size. In all cases, if a density
p>0 of overconstraints is present, as when a packing is deformed by
compression, or when a glass is outside its isostatic composition window, all
asymptotic moduli become finite. For square networks with periodic boundary
conditions, these are of order sqrt{p}. For directed networks, elastic moduli
are of order exp{-c/p}, indicating the existence of an "isostatic length scale"
of order 1/p.Comment: 6 pages, 6 figues, to appear in Europhysics Letter
Self-organized criticality in a rice-pile model
We present a new model for relaxations in piles of granular material. The
relaxations are determined by a stochastic rule which models the effect of
friction between the grains. We find power-law distributions for avalanche
sizes and lifetimes characterized by the exponents and
, respectively. For the discharge events, we find a
characteristic size that scales with the system size as , with . We also find that the frequency of the discharge events
decrease with the system size as with .Comment: 4 pages, RevTex, multicol, epsf, rotate (sty files provided). To
appear Phys. Rev. E Rapid Communication (Nov or Dec 96
Optimization Strategies in Complex Systems
We consider a class of combinatorial optimization problems that emerge in a
variety of domains among which: condensed matter physics, theory of financial
risks, error correcting codes in information transmissions, molecular and
protein conformation, image restoration. We show the performances of two
algorithms, the``greedy'' (quick decrease along the gradient) and
the``reluctant'' (slow decrease close to the level curves) as well as those of
a``stochastic convex interpolation''of the two. Concepts like the average
relaxation time and the wideness of the attraction basin are analyzed and their
system size dependence illustrated.Comment: 8 pages, 3 figure
Cellular system information capacity change at higher frequencies due to propagation loss and system parameters
In this paper, mathematical analysis supported by computer simulation is used to study cellular system information capacity change due to propagation loss and system parameters (such as path loss exponent, shadowing and antenna height) at microwave carrier frequencies greater than 2 GHz and smaller cell size radius. An improved co-channel interference model, which includes the second tier co-channel interfering cells is used for the analysis. The system performance is measured in terms of the uplink information capacity of a time-division multiple access (TDMA) based cellular wireless system. The analysis and simulation results show that the second tier co-channel interfering cells become active at higher microwave carrier frequencies and smaller cell size radius. The results show that for both distance-dependent: path loss, shadowing and effective road height the uplink information capacity of the cellular wireless system decreases as carrier frequency increases and cell size radius R decreases. For example at a carrier frequency fc = 15.75 GHz, basic path loss
exponent α = 2 and cell size radius R = 100, 500 and 1000m the decrease in information capacity was 20, 5.29 and 2.68%
The size and polydispersity of silica nanoparticles under simulated hot spring conditions
The nucleation and growth of silica nanoparticles in supersaturated geothermal waters was simulated using a flow-through geothermal simulator system. The effect of silica concentration ([SiO2]), ionic strength (IS), temperature (T) and organic additives on the size and polydispersity of the forming silica nanoparticles was quantified. A decrease in temperature (58 to 33°C) and the addition of glucose restricted particle growth to sizes <20 nm, while varying [SiO2] or ISdid not affect the size (30-35 nm) and polydispersity (±9 nm) observed at 58°C. Conversely, the addition of xanthan gum induced the development of thin films that enhanced silica aggregation
Local structure of REFeAsO (RE=La, Pr, Nd, Sm) oxypnictides studied by Fe K-edge EXAFS
Local structure of REOFeAs (RE=La, Pr, Nd, Sm) system has been studied as a
function of chemical pressure varied due to different rare-earth size. Fe
K-edge extended X-ray absorption fine structure (EXAFS) measurements in the
fluorescence mode has permitted to compare systematically the inter-atomic
distances and their mean square relative displacements (MSRD). We find that the
Fe-As bond length and the corresponding MSRD hardly show any change, suggesting
the strongly covalent nature of this bond, while the Fe-Fe and Fe-RE bond
lengths decrease with decreasing rare earth size. The results provide important
information on the atomic correlations that could have direct implication on
the superconductivity and magnetism of REOFeAs system, with the chemical
pressure being a key ingredient
- …
