65,804 research outputs found
Initial states and decoherence of histories
We study decoherence properties of arbitrarily long histories constructed
from a fixed projective partition of a finite dimensional Hilbert space. We
show that decoherence of such histories for all initial states that are
naturally induced by the projective partition implies decoherence for arbitrary
initial states. In addition we generalize the simple necessary decoherence
condition [Scherer et al., Phys. Lett. A (2004)] for such histories to the case
of arbitrary coarse-graining.Comment: 10 page
Decoherence in a system of many two--level atoms
I show that the decoherence in a system of degenerate two--level atoms
interacting with a bosonic heat bath is for any number of atoms governed by
a generalized Hamming distance (called ``decoherence metric'') between the
superposed quantum states, with a time--dependent metric tensor that is
specific for the heat bath.The decoherence metric allows for the complete
characterization of the decoherence of all possible superpositions of
many-particle states, and can be applied to minimize the over-all decoherence
in a quantum memory. For qubits which are far apart, the decoherence is given
by a function describing single-qubit decoherence times the standard Hamming
distance. I apply the theory to cold atoms in an optical lattice interacting
with black body radiation.Comment: replaced with published versio
Completely-Positive Non-Markovian Decoherence
We propose an effective Hamiltonian approach to investigate decoherence of a
quantum system in a non-Markovian reservoir, naturally imposing the complete
positivity on the reduced dynamics of the system. The formalism is based on the
notion of an effective reservoir, i.e., certain collective degrees of freedom
in the reservoir that are responsible for the decoherence. As examples for
completely positive decoherence, we present three typical decoherence processes
for a qubit such as dephasing, depolarizing, and amplitude-damping. The effects
of the non-Markovian decoherence are compared to the Markovian decoherence.Comment: 8 pages, 1 figur
Decoherence of Flux Qubits Coupled to Electronic Circuits
On the way to solid-state quantum computing, overcoming decoherence is the
central issue. In this contribution, we discuss the modeling of decoherence of
a superonducting flux qubit coupled to dissipative electronic circuitry. We
discuss its impact on single qubit decoherence rates and on the performance of
two-qubit gates. These results can be used for designing decoherence-optimal
setups.Comment: 16 pages, 5 figures, to appear in Advances in Solid State Physics,
Vol. 43 (2003
Limitations of practical multi-photon decoherence-free states
It is shown in this paper that decoherence-free subspace (DFS) of practical
multi-photon polarization can not avoid the exponential decoherence even in the
same extra-environment if the photons are frequency-anticorrelated. The reason
lies in that the condition of collective decoherence is not satisfied in this
case. As an example, the evolution of biphoton's decoherence-free state is
given. Possible solution for feasible multi-photon's DFS state is also given.Comment: 6 pages, no figur
All (qubit) decoherences: Complete characterization and physical implementation
We investigate decoherence channels that are modelled as a sequence of
collisions of a quantum system (e.g., a qubit) with particles (e.g., qubits) of
the environment. We show that collisions induce decoherence when a bi-partite
interaction between the system qubit and an environment (reservoir) qubit is
described by the controlled-U unitary transformation (gate). We characterize
decoherence channels and in the case of a qubit we specify the most general
decoherence channel and derive a corresponding master equation. Finally, we
analyze entanglement that is generated during the process of decoherence
between the system and its environment.Comment: 10 pages, 3 figure
Asymmetric Electron-Hole Decoherence in Ion-Gated Epitaxial Graphene
We report on asymmetric electron-hole decoherence in epitaxial graphene gated
by an ionic liquid. The observed negative magnetoresistance near zero magnetic
field for different gate voltages, analyzed in the framework of weak
localization, gives rise to distinct electron-hole decoherence. The hole
decoherence rate increases prominently with decreasing negative gate voltage
while the electron decoherence rate does not exhibit any substantial gate
dependence. Quantitatively, the hole decoherence rate is as large as the
electron decoherence rate by a factor of two. We discuss possible microscopic
origins including spin-exchange scattering consistent with our experimental
observations
- …
