2,038,906 research outputs found
Decision support tools for selecting organisational improvement initiatives: a review
Decision support tools are used in many organisations to support organisational decision making activities. However, very limited studies have been found focussing on the decision support tools for selecting organisational improvement initiatives. Improvement initiatives are approaches, management systems, tools and/or techniques that can be used for managing and improving organisations, such as Lean, ISO9001 and Improvement Team. Four existing decision support tools were reviewed and compared. All four decision support tools consist of decision matrix, rating and ranking to assist in selecting appropriate improvement initiative. Finally, several potential future studies have been proposed
Decision Support Methods and Tools
This paper is one of a set of papers, developed simultaneously and presented within a single conference session, that are intended to highlight systems analysis and design capabilities within the Systems Analysis and Concepts Directorate (SACD) of the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC). This paper focuses on the specific capabilities of uncertainty/risk analysis, quantification, propagation, decomposition, and management, robust/reliability design methods, and extensions of these capabilities into decision analysis methods within SACD. These disciplines are discussed together herein under the name of Decision Support Methods and Tools. Several examples are discussed which highlight the application of these methods within current or recent aerospace research at the NASA LaRC. Where applicable, commercially available, or government developed software tools are also discusse
Decision support tools for fertilizer recommendation
United States Agency for International Developmen
Decision Support Tools for Cloud Migration in the Enterprise
This paper describes two tools that aim to support decision making during the
migration of IT systems to the cloud. The first is a modeling tool that
produces cost estimates of using public IaaS clouds. The tool enables IT
architects to model their applications, data and infrastructure requirements in
addition to their computational resource usage patterns. The tool can be used
to compare the cost of different cloud providers, deployment options and usage
scenarios. The second tool is a spreadsheet that outlines the benefits and
risks of using IaaS clouds from an enterprise perspective; this tool provides a
starting point for risk assessment. Two case studies were used to evaluate the
tools. The tools were useful as they informed decision makers about the costs,
benefits and risks of using the cloud.Comment: To appear in IEEE CLOUD 201
Structuring Decisions Under Deep Uncertainty
Innovative research on decision making under ‘deep uncertainty’ is underway in applied fields such as engineering and operational research, largely outside the view of normative theorists grounded in decision theory. Applied methods and tools for decision support under deep uncertainty go beyond standard decision theory in the attention that they give to the structuring of decisions. Decision structuring is an important part of a broader philosophy of managing uncertainty in decision making, and normative decision theorists can both learn from, and contribute to, the growing deep uncertainty decision support literature
Autoencoders for strategic decision support
In the majority of executive domains, a notion of normality is involved in
most strategic decisions. However, few data-driven tools that support strategic
decision-making are available. We introduce and extend the use of autoencoders
to provide strategically relevant granular feedback. A first experiment
indicates that experts are inconsistent in their decision making, highlighting
the need for strategic decision support. Furthermore, using two large
industry-provided human resources datasets, the proposed solution is evaluated
in terms of ranking accuracy, synergy with human experts, and dimension-level
feedback. This three-point scheme is validated using (a) synthetic data, (b)
the perspective of data quality, (c) blind expert validation, and (d)
transparent expert evaluation. Our study confirms several principal weaknesses
of human decision-making and stresses the importance of synergy between a model
and humans. Moreover, unsupervised learning and in particular the autoencoder
are shown to be valuable tools for strategic decision-making
Assessment and mitigation of droughts in South-West Asia: issues and prospects
Drought / Monitoring / Assessment / Risks / Analysis / Decision support tools / Policy / Institutions / Social aspects / Economic aspects / Water harvesting / Asia
- …
