610,719 research outputs found
The problem with the SURF scheme
There is a serious problem with one of the assumptions made in the security
proof of the SURF scheme. This problem turns out to be easy in the regime of
parameters needed for the SURF scheme to work.
We give afterwards the old version of the paper for the reader's convenience.Comment: Warning : we found a serious problem in the security proof of the
SURF scheme. We explain this problem here and give the old version of the
paper afterward
A tight security reduction in the quantum random oracle model for code-based signature schemes
Quantum secure signature schemes have a lot of attention recently, in
particular because of the NIST call to standardize quantum safe cryptography.
However, only few signature schemes can have concrete quantum security because
of technical difficulties associated with the Quantum Random Oracle Model
(QROM). In this paper, we show that code-based signature schemes based on the
full domain hash paradigm can behave very well in the QROM i.e. that we can
have tight security reductions. We also study quantum algorithms related to the
underlying code-based assumption. Finally, we apply our reduction to a concrete
example: the SURF signature scheme. We provide parameters for 128 bits of
quantum security in the QROM and show that the obtained parameters are
competitive compared to other similar quantum secure signature schemes
Rock debris on glaciers: a mechanism for reducing glacier sensitivity to climate change
Rock debris covering a glacier surface affects the local melt rate by regulating the amount of solar energy available for melting. Supraglacial debris with a thickness of about 2 cm or more insulates the ice, thereby reducing the heat flux. This reduction of melt rate allows heavily debris-covered glaciers to extend further down-valley than meteorological variables alone would suggest. Here we present a regional study of supraglacial debris cover in the Delta Mountains, a sub-range of the Alaska Range. Using remote sensing and in situ measurements we consider the following questions: -How does glacier and debris-covered area change from 1986 to 2010?
-Can we estimate debris thickness remotely?
-How does debris affect melt?
-Will ice melt cease below two meters of debris?
-Is there a correlation between geologic setting and debris cover
Metallicity of solar-type stars with debris discs and planets
Around 16% of the solar-like stars in our neighbourhood show IR-excesses due
to debris discs and a fraction of them are known to host planets. We aim to
determine in a homogeneous way the metallicity of a sample of stars with known
debris discs and planets. Our analysis includes the calculation of the
fundamental stellar parameters by applying the iron ionisation equilibrium
conditions to several isolated Fe I and Fe II lines. The metallicity
distributions of the different stellar samples suggest that there is a
transition toward higher metallicities from stars with neither debris discs nor
planets to stars hosting giant planets. Stars with debris discs and stars with
neither debris nor planets follow a similar metallicity distribution, although
the distribution of the first ones might be shifted towards higher
metallicities. Stars with debris discs and planets have the same metallicity
behaviour as stars hosting planets, irrespective of whether the planets are
low-mass or gas giants. In the case of debris discs and giant planets, the
planets are usually cool, -semimajor axis larger than 0.1 AU. The data also
suggest that stars with debris discs and cool giant planets tend to have a low
dust luminosity, and are among the less luminous debris discs known. We also
find evidence of an anticorrelation between the luminosity of the dust and the
planet eccentricity. Our data show that the presence of planets, not the debris
disc, correlates with the stellar metallicity. The results confirm that
core-accretion models represent suitable scenarios for debris disc and planet
formation. Dynamical instabilities produced by eccentric giant planets could
explain the suggested dust luminosity trends observed for stars with debris
discs and planets.Comment: Accepted for publication by A&A, 17 pages, 10 figure
Debris Thickness of Glaciers in the Everest Area (Nepal Himalaya) Derived from Satellite Imagery Using a Nonlinear Energy Balance Model
Debris thickness is an important characteristic of debris-covered glaciers in the Everest region of the Himalayas. The debris thickness controls the melt rates of the glaciers, which has large implications for hydrologic models, the glaciers' response to climate change, and the development of glacial lakes. Despite its importance, there is little knowledge of how the debris thickness varies over these glaciers. This paper uses an energy balance model in conjunction with Landsat7 Enhanced Thematic Mapper Plus (ETM+) satellite imagery to derive thermal resistances, which are the debris thickness divided by the thermal conductivity. Model results are reported in terms of debris thickness using an effective thermal conductivity derived from field data. The developed model accounts for the nonlinear temperature gradient in the debris cover to derive reasonable debris thicknesses. Fieldwork performed on Imja-Lhotse Shar Glacier in September 2013 was used to compare to the modeled debris thicknesses. Results indicate that accounting for the nonlinear temperature gradient is crucial. Furthermore, correcting the incoming shortwave radiation term for the effects of topography and resampling to the resolution of the thermal band's pixel is imperative to deriving reasonable debris thicknesses. Since the topographic correction is important, the model will improve with the quality of the digital elevation model (DEM). The main limitation of this work is the poor resolution (60m) of the satellite's thermal band. The derived debris thicknesses are reasonable at this resolution, but trends related to slope and aspect are unable to be modeled on a finer scale. Nonetheless, the study finds this model derives reasonable debris thicknesses on this scale and was applied to other debris-covered glaciers in the Everest region.USAID Climate Change Resilient Development (CCRD) projectCenter for Research in Water Resource
Estimation of magnitudes of debris flows in selected torrential watersheds in Slovenia
In this paper the application of different methods for estimation of magnitudes of rainfall-induced debris flows in 18 torrents in the Upper Sava River valley, NW Slovenia, and in 2 torrents in Pohorje, N Slovenia is described. Additional verification of the methods was performed in the torrential watersheds with active debris flows in the recent past (Predelica and Brusnik in the Soca River basin, W Slovenia). For some of the methods, the knowledge of morphometric characteristics of a torrential watershed, torrential channel and torrential fan is enough. For other methods, a mathematical tool (HEC-HMS) had to be applied in order to develop a hydrologic run-off model of precipitation that can trigger debris flows. Computed debris-flow magnitudes were of the order between 6,500 m(3) and 340,000 m(3). Their values are a function of torrential watershed parameters, such as: watershed area, Melton number, fan gradient, and torrential channel gradient. The investigated fans were classified into 3 groups with regard to the debris-flow hazard: debris-flow fans (hazard exists), torrential fans (no hazard), and transitional fans (debris flows are possible, but with low possibility). A limit between debris-flow fans and torrential fans is proposed: Melton number 0.3 and torrential fan gradient 4 degrees, that is, 7%. Out of 24 investigated torrential fans, 13 fans were classified into the group of debris-flow fans, 5 fans were classified into the group of torrential fans, and the rest 6 fans were classified into the group of transitional fans
A survey of debris trails from short-period comets
We observed 34 comets using the 24 micron camera on the Spitzer Space
Telescope. Each image contains the nucleus and covers at least 10^6 km of each
comet's orbit. Debris trails due to mm-sized or larger particles were found
along the orbits of 27 comets; 4 comets had small-particle dust tails and a
viewing geometry that made debris trails impossible to distinguish; and only 3
had no debris trail despite favorable observing conditions. There are now 30
Jupiter-family comets with known debris trails, of which 22 are reported in
this paper for the first time. The detection rate is >80%, indicating that
debris trails are a generic feature of short-period comets. By comparison to
orbital calculations for particles of a range of sizes ejected over 2 yr prior
to observation, we find that particles comprising 4 debris trails are typically
mm-sized while the remainder of the debris trails require particles larger than
this. The lower-limit masses of the debris trails are typically 10^11 g, and
the median mass loss rate is 2 kg/s. The mass-loss rate in trail particles is
comparable to that inferred from OH production rates and larger than that
inferred from visible-light scattering in comae.Comment: accepted by Icarus; figures compressed for astro-p
Combustion Analysis of a Meteorite Debris
In this research paper, nature and origins of a meteorite debris identified near village Lehri in district Jhelum, Pakistan have been determined. Total carbon content of a specimen of the meteorite debris is determined using combustion analysis and this abundance has been compared with values reported in literature to establish likely origins of the debris
- …
