1,267 research outputs found

    A parallel edge orientation algorithm for quadrilateral meshes

    Get PDF
    One approach to achieving correct finite element assembly is to ensure that the local orientation of facets relative to each cell in the mesh is consistent with the global orientation of that facet. Rognes et al. have shown how to achieve this for any mesh composed of simplex elements, and deal.II contains a serial algorithm to construct a consistent orientation of any quadrilateral mesh of an orientable manifold. The core contribution of this paper is the extension of this algorithm for distributed memory parallel computers, which facilitates its seamless application as part of a parallel simulation system. Furthermore, our analysis establishes a link between the well-known Union-Find algorithm and the construction of a consistent orientation of a quadrilateral mesh. As a result, existing work on the parallelisation of the Union-Find algorithm can be easily adapted to construct further parallel algorithms for mesh orientations.Comment: Second revision: minor change

    Implementing the conjugate gradient algorithm on multi-core systems

    Get PDF
    In linear solvers, like the conjugate gradient algorithm, sparse-matrix vector multiplication is an important kernel. Due to the sparseness of the matrices, the solver runs relatively slow. For digital optical tomography (DOT), a large set of linear equations have to be solved which currently takes in the order of hours on desktop computers. Our goal was to speed up the conjugate gradient solver. In this paper we present the results of applying multiple optimization techniques and exploiting multi-core solutions offered by two recently introduced architectures: Intel’s Woodcrest\ud general purpose processor and NVIDIA’s G80 graphical processing unit. Using these techniques for these architectures, a speedup of a factor three\ud has been achieved
    • …
    corecore