4,756 research outputs found

    Sp1 acetylation is associated with loss of DNA binding at promoters associated with cell cycle arrest and cell death in a colon cell line

    Get PDF
    Butyrate, a known histone deacetylase inhibitor (HDACi) and product of fibre fermentation, is postulated to mediate the protective effect of dietary fibre against colon cancer. The transcription factor Sp1 is a target of acetylation and is known to be associated with class I HDACs, including HDAC1. Sp1 is a ubiquitous transcription factor and Sp1-regulated genes include those involved in cell cycle regulation, apoptosis and lipogenesis: all major pathways in cancer development. The only known acetylated residue of Sp1 is lysine703 which resides in the DNA binding domain. Here we show that acetylated Sp1 loses p21- and bak-promoter -binding function in vitro. Furthermore treatment with a panel of HDAC inhibitors showed clustering of activities for a subset of inhibitors, causing G2 cell cycle arrest, Sp1 acetylation, p21 and Bak over-expression, all with very similar EC50 concentrations. These HDACi activities were not distributed according to the molecular class of compound. In order to mimic loss of binding, an siRNA strategy was used to reduce Sp1 expression. This resulted in altered expression of multiple elements of the p53/p21 pathway. Taken together our data suggest a mechanistic model for the chemopreventive actions of butyrate in colon epithelial cells, and provide new insight into the differential activities some classes of HDAC inhibitors

    Histone deacetylase inhibitors induce invasion of human melanoma cells in vitro via differential regulation of N-cadherin expression and RhoA activity

    Get PDF
    Background: Histone deacetylase inhibitors (HDACi) exert multiple cytotoxic actions on cancer cells. Currently, different synthetic HDACi are in clinical use or clinical trials; nevertheless, since both pro-invasive and anti-invasive activities have been described, there is some controversy about the effect of HDACi on melanoma cells. Methods: Matrigel and Collagen invasion assays were performed to evaluate the effect of several HDACi (Butyrate, Trichostatin A, Valproic acid and Vorinostat) on two human melanoma cell line invasion (A375 and HT-144). The expression of N- and E-Cadherin and the activity of the RhoA GTPase were analyzed to elucidate the mechanisms involved in the HDACi activity. Results: HDACi showed a pro-invasive effect on melanoma cells in vitro. This effect was accompanied by an up-regulation of N-cadherin expression and an inhibition of RhoA activity. Moreover, the down-regulation of N-cadherin through blocking antibodies or siRNA abrogated the pro-invasive effect of the HDACi and, additionally, the inhibition of the Rho/ROCK pathway led to an increase of melanoma cell invasion similar to that observed with the HDACi treatments. Conclusion: These results suggest a role of N-cadherin and RhoA in HDACi induced invasion and call into question the suitability of some HDACi as antitumor agents for melanoma patients

    Effect of the Butyrate Prodrug Pivaloyloxymethyl Butyrate (AN9) on a Mouse Model for Spinal Muscular Atrophy.

    Get PDF
    Spinal muscular atrophy (SMA) is an early-onset motor neuron disease that leads to loss of muscle function. Butyrate (BA)-based compounds markedly improve the survival and motor phenotype of SMA mice. In this study, we examine the protective effects of the BA prodrug pivaloyloxymethyl butyrate (AN9) on the survival of SMNΔ7 SMA mice. Oral administration of AN9 beginning at PND04 almost doubled the average lifespan of SMNΔ7 SMA mice. AN9 treatment also increased the growth rate of SMNΔ7 SMA mice when compared to vehicle-treated SMNΔ7 SMA mice. In conclusion, BA prodrugs like AN9 have ameliorative effects on SMNΔ7 SMA mice

    Butyrate suppresses expression of neuropilin I in colorectal cell lines through inhibition of Sp1 transactivation

    Get PDF
    Background: Neuropilin is a transmembrane receptor for vascular endothelial growth factor (VEGF) and is expressed in normal endothelial cells and upregulated in cancer cells. Neuropilin-1 (NRP-1) has been shown to promote tumour cell migration and survival in colon cancer in response to VEGF binding. The expression profiles of neuropilins, associated co-receptors and known ligands have been mapped in three colorectal cell lines: Caco-2, HCT116 & HT29. We have previously shown that butyrate, a naturally occurring histone deacetylase inhibitor (HDACi) produced by fermentation of fibre in the colon, causes apoptosis of colon cancer cell lines. Results: Here we demonstrate that butyrate down-regulates NRP-1 and VEGF at the mRNA and protein level in colorectal cancer cell lines. NRP-1 is a known transcriptional target of Sp1, whose activity is regulated by acetylation. NRP-1 down-regulation by butyrate was associated with decreased binding affinity of Sp1 for canonical Sp-binding sites in the NRP-1 promoter. siRNA-mediated knock-down of Sp1 implied that Sp1 may have strong DNA binding activity but weak transactivation potential. Conclusion: The downregulation of the key apoptotic and angiogenesis regulator NRP-1 by butyrate suggests a novel contributory mechanism to the chemopreventive effect of dietary fibre

    The histone deacetylase inhibitor valproic acid alters growth properties of renal cell carcinoma in vitro and in vivo

    Get PDF
    Histone deacetylase (HDAC) inhibitors represent a promising class of antineoplastic agents which affect tumour growth, differentiation and invasion. The effects of the HDAC inhibitor valproic acid (VPA) were tested in vitro and in vivo on pre-clinical renal cell carcinoma (RCC) models. Caki-1, KTC-26 or A498 cells were treated with various concentrations of VPA during in vitro cell proliferation 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays and to evaluate cell cycle manipulation. In vivo tumour growth was conducted in subcutaneous xenograft mouse models. The anti-tumoural potential of VPA combined with low-dosed interferon-α (IFN-α) was also investigated. VPA significantly and dose-dependently up-regulated histones H3 and H4 acetylation and caused growth arrest in RCC cells. VPA altered cell cycle regulating proteins, in particular CDK2, cyclin B, cyclin D3, p21 and Rb. In vivo, VPA significantly inhibited the growth of Caki-1 in subcutaneous xenografts, accompanied by a strong accumulation of p21 and bax in tissue specimens of VPA-treated animals. VPA–IFN-α combination markedly enhanced the effects of VPA monotherapy on RCC proliferation in vitro, but did not further enhance the anti-tumoural potential of VPA in vivo. VPA was found to have profound effects on RCC cell growth, lending support to the initiation of clinical testing of VPA for treating advanced RCC

    Trichostatin A induces 5-lipoxygenase promoter activity and mRNA expression via inhibition of histone deacetylase 2 and 3

    Get PDF
    The 5-lipoxygenase (5-LO) is the key enzyme in the formation of leukotrienes. We have previously shown that the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) activates 5-LO transcription via recruitment of Sp1, Sp3 and RNA polymerase II to the proximal promoter. To identify the HDACs involved in the regulation of 5-LO promoter activity isoform-specific HDAC inhibitors were applied. 5-LO promoter activity and mRNA expression were up-regulated by the class I HDAC inhibitors apicidin and MS-275 but not by class II inhibitors. Knockdown of HDAC 1, 2 and 3 revealed that HDAC2 and HDAC3 but not HDAC1 is involved in the up-regulation of 5-LO mRNA expression. To analyse the chromatin modifications at the 5-LO promoter associated with HDAC inhibition, the time course of 5-LO mRNA induction by trichostatin A was investigated and the concomitant changes in histone modifications at the 5-LO promoter in HL-60, U937 and Mono Mac6 cells were determined. Chromatin immunoprecipitation analysis revealed that trichostatin A increases acetylation of histones H3 and H4 at the 5-LO core promoter in HL-60 and U937 cells whereas no significant changes were observed in Mono Mac6 cells. The appearance of H3 and H4 acetylation preceded the 5-LO mRNA induction whereas in all three cell lines, induction of 5-LO mRNA expression correlated with histone H3 lysine 4 trimethylation (H3K4me3), a marker for transcriptional activity of gene promoters

    HDAC inhibition is associated to valproic acid induction of early megakaryocytic markers

    Get PDF
    Valproic acid (VPA), a histone deacetylase inhibitor, causes differentiation in different cell lines and in a cell-specific manner; yet, its effect on megakaryocytic (MK) differentiation has not been studied. We evaluated whether VPA induces MK differentiation in a UT-7 cell line through histone acetylation in the GpIIIa gene region and activation of the ERK pathway. UT-7 cells, derived from megakaryoblastic leukemia, were treated with VPA at various concentrations, and the expression of differentiation markers as well as the gene expression profile was assessed. Flow cytometry, immunoblot analysis, and RT-PCR demonstrated that VPA induced the expression of the early MK markers GpIIIa (CD61) and GpIIb/IIIa (CD41) in a dose-dependent manner. The VPA-treated cells showed hyperacetylation of the histones H3 and H4; in particular, histone acetylation was found to have been associated with CD61 expression, in that the GpIIIa promoter showed H4 hyperacetylation, as demonstrated by the chromatin immunoprecipitation assay. Furthermore, activation of the ERK pathway was involved in VPA-mediated CD61/CD41 expression and in cell adhesion, as demonstrated by using the MEK/ERK inhibitor U0126. In conclusion, the capacity of VPA to commit UT-7 cells to MK differentiation is mediated by its inhibitory action on HDAC and the long-lived activation of ERK1/2
    corecore