638,140 research outputs found

    Dawn

    Full text link

    Characteristics of the flankmagnetopause: Cluster observations

    Full text link
    The magnetopause is a current sheet forming the boundary between the geomagnetic field on one side and the shocked solar wind on the other side. This paper discusses properties of the low-latitude dawn and dusk flanks of the magnetopause. The reported results are based on a large number of measurements obtained by the Cluster satellites during magnetopause traversals. Using a combination of single-spacecraft and multispacecraft techniques, we calculated macroscopic features such as thickness, location, and motion of the magnetopause. The results show that the typical flank magnetopause is significantly thicker than the dayside magnetopause and also possesses a pronounced and persistent dawn-dusk asymmetry. Thicknesses vary from 150 to 5000 km, with an median thickness of around 1400 km at dawn and around 1150 km at dusk. Current densities are on average higher on dusk, suggesting that the total current at dawn and dusk are similar. Solar wind conditions and the interplanetary magnetic field cannot fully explain the observed dawn-dusk asymmetry. For a number of crossings we were also able to derive detailed current density profiles. The profiles show that the magnetopause often consists of two or more adjacent current sheets, each current sheet typically several ion gyroradii thick and often with different current direction. This demonstrates that the flank magnetopause has a structure that is more complex than the thin, one-dimensional current sheet described by a Chapman-Ferraro layer

    The Dawn of Galaxies

    Full text link
    The development of primordial inhomogeneities into the non-linear regime and the formation of the first astrophysical objects within dark matter halos mark the transition from a simple, neutral, cooling universe -- described by just a few parameters -- to a messy ionized one -- the realm of radiative, hydrodynamic, and star formation processes. The recent measurement by the WMAP satellite of a large optical depth to electron scattering implies that this transition must have begun very early, and that the universe was reionized at redshift z_ion=17\pm 5. It is an early generation of extremely metal-poor massive stars and/or `seed' accreting black holes in subgalactic halos that may have generated the ultraviolet radiation and mechanical energy that reheated and reionized most of the hydrogen in the cosmos. The detailed thermal, ionization, and chemical enrichment history of the universe during the crucial formative stages around z=10-20 depends on the power-spectrum of density fluctuations on small scales, the stellar initial mass function and star formation efficiency, a complex network of poorly understood `feedback' mechanisms, and remains one of the crucial missing links in galaxy formation and evolution studies.Comment: 14 pages, 4 figures, to appear in the proceedings of the XXI Texas Symposium on Relativistic Astrophysics held on December 9--13 2002, in Florence, Ital

    The Unecessary Pastor: Rediscovering the Call

    Get PDF
    Author: Dawn, Marva J. Title: Unnecessary pastor. Publisher: Grand Rapids: Eerdmans, 2000

    Jesus Christ in the preaching of Calvin and Schleiermacher

    Get PDF
    Reviewed Book: DeVries, Dawn. Jesus Christ in the preaching of Calvin and Schleiermacher. Louisville, Ky: Westminster/John Knox Press, 1996. Columbia series in Reformed theology

    Quantitative analysis of regulatory flexibility under changing environmental conditions

    Get PDF
    The circadian clock controls 24-h rhythms in many biological processes, allowing appropriate timing of biological rhythms relative to dawn and dusk. Known clock circuits include multiple, interlocked feedback loops. Theory suggested that multiple loops contribute the flexibility for molecular rhythms to track multiple phases of the external cycle. Clear dawn- and dusk-tracking rhythms illustrate the flexibility of timing in Ipomoea nil. Molecular clock components in Arabidopsis thaliana showed complex, photoperiod-dependent regulation, which was analysed by comparison with three contrasting models. A simple, quantitative measure, Dusk Sensitivity, was introduced to compare the behaviour of clock models with varying loop complexity. Evening-expressed clock genes showed photoperiod-dependent dusk sensitivity, as predicted by the three-loop model, whereas the one- and two-loop models tracked dawn and dusk, respectively. Output genes for starch degradation achieved dusk-tracking expression through light regulation, rather than a dusk-tracking rhythm. Model analysis predicted which biochemical processes could be manipulated to extend dusk tracking. Our results reveal how an operating principle of biological regulators applies specifically to the plant circadian clock

    The Dynamical Environment of Dawn at Vesta

    Full text link
    Dawn is the first NASA mission to operate in the vicinity of the two most massive asteroids in the main belt, Ceres and Vesta. This double-rendezvous mission is enabled by the use of low-thrust solar electric propulsion. Dawn will arrive at Vesta in 2011 and will operate in its vicinity for approximately one year. Vesta's mass and non-spherical shape, coupled with its rotational period, presents very interesting challenges to a spacecraft that depends principally upon low-thrust propulsion for trajectory-changing maneuvers. The details of Vesta's high-order gravitational terms will not be determined until after Dawn's arrival at Vesta, but it is clear that their effect on Dawn operations creates the most complex operational environment for a NASA mission to date. Gravitational perturbations give rise to oscillations in Dawn's orbital radius, and it is found that trapping of the spacecraft is possible near the 1:1 resonance between Dawn's orbital period and Vesta's rotational period, located approximately between 520 and 580 km orbital radius.This resonant trapping can be escaped by thrusting at the appropriate orbital phase. Having passed through the 1:1 resonance, gravitational perturbations ultimately limit the minimum radius for low-altitude operations to about 400 km,in order to safely prevent surface impact. The lowest practical orbit is desirable in order to maximize signal-to-noise and spatial resolution of the Gamma-Ray and Neutron Detector and to provide the highest spatial resolution observations by Dawn's Framing Camera and Visible InfraRed mapping spectrometer. Dawn dynamical behavior is modeled in the context of a wide range of Vesta gravity models. Many of these models are distinguishable during Dawn's High Altitude Mapping Orbit and the remainder are resolved during Dawn's Low Altitude Mapping Orbit, providing insight into Vesta's interior structure.Comment: Corrected normalization coefficients; updated table text and reference
    corecore