12,334 research outputs found

    Modular design of data-parallel graph algorithms

    Get PDF
    Amorphous Data Parallelism has proven to be a suitable vehicle for implementing concurrent graph algorithms effectively on multi-core architectures. In view of the growing complexity of graph algorithms for information analysis, there is a need to facilitate modular design techniques in the context of Amorphous Data Parallelism. In this paper, we investigate what it takes to formulate algorithms possessing Amorphous Data Parallelism in a modular fashion enabling a large degree of code re-use. Using the betweenness centrality algorithm, a widely popular algorithm in the analysis of social networks, we demonstrate that a single optimisation technique can suffice to enable a modular programming style without loosing the efficiency of a tailor-made monolithic implementation

    Symbolic crosschecking of data-parallel floating-point code

    Get PDF

    LERC: Coordinated Cache Management for Data-Parallel Systems

    Full text link
    Memory caches are being aggressively used in today's data-parallel frameworks such as Spark, Tez and Storm. By caching input and intermediate data in memory, compute tasks can witness speedup by orders of magnitude. To maximize the chance of in-memory data access, existing cache algorithms, be it recency- or frequency-based, settle on cache hit ratio as the optimization objective. However, unlike the conventional belief, we show in this paper that simply pursuing a higher cache hit ratio of individual data blocks does not necessarily translate into faster task completion in data-parallel environments. A data-parallel task typically depends on multiple input data blocks. Unless all of these blocks are cached in memory, no speedup will result. To capture this all-or-nothing property, we propose a more relevant metric, called effective cache hit ratio. Specifically, a cache hit of a data block is said to be effective if it can speed up a compute task. In order to optimize the effective cache hit ratio, we propose the Least Effective Reference Count (LERC) policy that persists the dependent blocks of a compute task as a whole in memory. We have implemented the LERC policy as a memory manager in Spark and evaluated its performance through Amazon EC2 deployment. Evaluation results demonstrate that LERC helps speed up data-parallel jobs by up to 37% compared with the widely employed least-recently-used (LRU) policy
    • …
    corecore