2,438,169 research outputs found

    Knowledge discovery for friction stir welding via data driven approaches: Part 2 – multiobjective modelling using fuzzy rule based systems

    Get PDF
    In this final part of this extensive study, a new systematic data-driven fuzzy modelling approach has been developed, taking into account both the modelling accuracy and its interpretability (transparency) as attributes. For the first time, a data-driven modelling framework has been proposed designed and implemented in order to model the intricate FSW behaviours relating to AA5083 aluminium alloy, consisting of the grain size, mechanical properties, as well as internal process properties. As a result, ‘Pareto-optimal’ predictive models have been successfully elicited which, through validations on real data for the aluminium alloy AA5083, have been shown to be accurate, transparent and generic despite the conservative number of data points used for model training and testing. Compared with analytically based methods, the proposed data-driven modelling approach provides a more effective way to construct prediction models for FSW when there is an apparent lack of fundamental process knowledge

    On the Predictability of non-CGM Diabetes Data for Personalized Recommendation

    Full text link
    With continuous glucose monitoring (CGM), data-driven models on blood glucose prediction have been shown to be effective in related work. However, such (CGM) systems are not always available, e.g., for a patient at home. In this work, we conduct a study on 9 patients and examine the predictability of data-driven (aka. machine learning) based models on patient-level blood glucose prediction; with measurements are taken only periodically (i.e., after several hours). To this end, we propose several post-prediction methods to account for the noise nature of these data, that marginally improves the performance of the end system.Comment: In Proceedings of ACM CIKM 2018 Workshop
    corecore