799,440 research outputs found

    Improving Entity Retrieval on Structured Data

    Full text link
    The increasing amount of data on the Web, in particular of Linked Data, has led to a diverse landscape of datasets, which make entity retrieval a challenging task. Explicit cross-dataset links, for instance to indicate co-references or related entities can significantly improve entity retrieval. However, only a small fraction of entities are interlinked through explicit statements. In this paper, we propose a two-fold entity retrieval approach. In a first, offline preprocessing step, we cluster entities based on the \emph{x--means} and \emph{spectral} clustering algorithms. In the second step, we propose an optimized retrieval model which takes advantage of our precomputed clusters. For a given set of entities retrieved by the BM25F retrieval approach and a given user query, we further expand the result set with relevant entities by considering features of the queries, entities and the precomputed clusters. Finally, we re-rank the expanded result set with respect to the relevance to the query. We perform a thorough experimental evaluation on the Billions Triple Challenge (BTC12) dataset. The proposed approach shows significant improvements compared to the baseline and state of the art approaches

    An affect-based video retrieval system with open vocabulary querying

    Get PDF
    Content-based video retrieval systems (CBVR) are creating new search and browse capabilities using metadata describing significant features of the data. An often overlooked aspect of human interpretation of multimedia data is the affective dimension. Incorporating affective information into multimedia metadata can potentially enable search using this alternative interpretation of multimedia content. Recent work has described methods to automatically assign affective labels to multimedia data using various approaches. However, the subjective and imprecise nature of affective labels makes it difficult to bridge the semantic gap between system-detected labels and user expression of information requirements in multimedia retrieval. We present a novel affect-based video retrieval system incorporating an open-vocabulary query stage based on WordNet enabling search using an unrestricted query vocabulary. The system performs automatic annotation of video data with labels of well defined affective terms. In retrieval annotated documents are ranked using the standard Okapi retrieval model based on open-vocabulary text queries. We present experimental results examining the behaviour of the system for retrieval of a collection of automatically annotated feature films of different genres. Our results indicate that affective annotation can potentially provide useful augmentation to more traditional objective content description in multimedia retrieval

    Data storage and retrieval system

    Get PDF
    The Data Storage and Retrieval System (DSRS) consists of off-the-shelf system components integrated as a file server supporting very large files. These files are on the order of one gigabyte of data per file, although smaller files on the order of one megabyte can be accommodated as well. For instance, one gigabyte of data occupies approximately six 9 track tape reels (recorded at 6250 bpi). Due to this large volume of media, it was desirable to shrink the size of the proposed media to a single portable cassette. In addition to large size, a key requirement was that the data needs to be transferred to a (VME based) workstation at very high data rates. One gigabyte (GB) of data needed to be transferred from an archiveable media on a file server to a workstation in less than 5 minutes. Equivalent size, on-line data needed to be transferred in less than 3 minutes. These requirements imply effective transfer rates on the order of four to eight megabytes per second (4-8 MB/s). The DSRS also needed to be able to send and receive data from a variety of other sources accessible from an Ethernet local area network

    Adaptive image retrieval using a graph model for semantic feature integration

    Get PDF
    The variety of features available to represent multimedia data constitutes a rich pool of information. However, the plethora of data poses a challenge in terms of feature selection and integration for effective retrieval. Moreover, to further improve effectiveness, the retrieval model should ideally incorporate context-dependent feature representations to allow for retrieval on a higher semantic level. In this paper we present a retrieval model and learning framework for the purpose of interactive information retrieval. We describe how semantic relations between multimedia objects based on user interaction can be learnt and then integrated with visual and textual features into a unified framework. The framework models both feature similarities and semantic relations in a single graph. Querying in this model is implemented using the theory of random walks. In addition, we present ideas to implement short-term learning from relevance feedback. Systematic experimental results validate the effectiveness of the proposed approach for image retrieval. However, the model is not restricted to the image domain and could easily be employed for retrieving multimedia data (and even a combination of different domains, eg images, audio and text documents)

    SEARS: Space Efficient And Reliable Storage System in the Cloud

    Full text link
    Today's cloud storage services must offer storage reliability and fast data retrieval for large amount of data without sacrificing storage cost. We present SEARS, a cloud-based storage system which integrates erasure coding and data deduplication to support efficient and reliable data storage with fast user response time. With proper association of data to storage server clusters, SEARS provides flexible mixing of different configurations, suitable for real-time and archival applications. Our prototype implementation of SEARS over Amazon EC2 shows that it outperforms existing storage systems in storage efficiency and file retrieval time. For 3 MB files, SEARS delivers retrieval time of 2.52.5 s compared to 77 s with existing systems.Comment: 4 pages, IEEE LCN 201
    corecore