15,528 research outputs found

    Static cylindrical symmetry and conformal flatness

    Full text link
    We present the whole set of equations with regularity and matching conditions required for the description of physically meaningful static cylindrically symmmetric distributions of matter, smoothly matched to Levi-Civita vacuum spacetime. It is shown that the conformally flat solution with equal principal stresses represents an incompressible fluid. It is also proved that any conformally flat cylindrically symmetric static source cannot be matched through Darmois conditions to the Levi-Civita spacetime. Further evidence is given that when the Newtonian mass per unit length reaches 1/2 the spacetime has plane symmetry.Comment: 13 pages, Late

    New Charged Dilaton Solutions in 2+1 Dimensions and Solutions with Cylindrical Symmetry in 3+1 Dimensions

    Full text link
    We report a new family of solutions to Einstein-Maxwell-dilaton gravity in 2+1 dimensions and Einstein-Maxwell gravity with cylindrical symmetry in 3+1 dimensions. A set of static charged solutions in 2+1 dimensions are obtained by a compactification of charged solutions in 3+1 dimensions with cylindrical symmetry. These solutions contain naked singularities for certain values of the parameters considered. New rotating charged solutions in 2+1 dimensions and 3+1 dimensions are generated treating the static charged solutions as seed metrics and performing SL(2;R)SL(2;R) transformations.Comment: Latex. No figure

    The Dirac-Maxwell Equations with Cylindrical Symmetry

    Get PDF
    A reduction of the Dirac-Maxwell equations in the case of static cylindrical symmetry is performed. The behaviour of the resulting system of o.d.e.'s is examined analytically and numerical solutions presented. There are two classes of solutions. The first type of solution is a Dirac field surrounding a charged "wire". The Dirac field is highly localised, concentrated in cylindrical shells about the wire. A comparison with the usual linearized theory demonstrates that this localization is entirely due to the non-linearities in the equations which result from the inclusion of the "self-field". The second class of solutions have the electrostatic potential finite along the axis of symmetry but unbounded at large distances from the axis.Comment: 17 pages, Latex, 5 figures, psfig, to be published in J. Maths Phy

    Ginzburg Landau theory for d-wave pairing and fourfold symmetric vortex core structure

    Full text link
    The Ginzburg Landau theory for d_{x^2-y^2}-wave superconductors is constructed, by starting from the Gor'kov equation with including correction terms up to the next order of ln(T_c/T). Some of the non-local correction terms are found to break the cylindrical symmetry and lead to the fourfold symmetric core structure, reflecting the internal degree of freedom in the pair potential. Using this extended Ginzburg Landau theory, we investigate the fourfold symmetric structure of the pair potential, current and magnetic field around an isolated single vortex, and clarify concretely how the vortex core structure deviates from the cylindrical symmetry in the d_{x^2-y^2}-wave superconductors.Comment: 12 pages including 8 eps figs, LaTeX with jpsj.sty & epsfi
    corecore