12,274 research outputs found

    ????????? ??????????????? ?????? ??????????????? ?????? ???????????????

    Get PDF
    Department of Energy Engineering (Battery Science and Technology)The continuous throng in demand for high energy density rechargeable batteries innovatively drives technological development in cell design as well as electrochemically active materials. In that perspective metal-free batteries consisting of a flowing seawater as a cathode active material were introduced. However, the electrochemical performance of the seawater battery was restrained by NASICON (Na3Zr2Si2PO12) ceramic solid electrolyte. Here, we demonstrate a new class of fibrous nanomat hard-carbon (FNHC) anode/1D (one-dimensional) bucky paper (1DBP) cathode hybrid electrode architecture in seawater battery based on 1D building block-interweaved hetero-nanomat frameworks. Differently from conventional slurry-cast electrodes, exquisitely designed hybrid hetero-nanomat electrodes are fabricated through concurrent dual electrospraying and electrospinning for the anode, vacuum-assisted infiltration for the cathode. HC nanoparticles are closely embedded in the spatially reinforced polymeric nanofiber/CNT hetero-nanomat skeletons that play a crucial role in constructing 3D-bicontinuous ion/electron transport pathways and allow to eliminate heavy metallic aluminum foil current collectors. Eventually the FNHC/1DBP seawater full cell, driven by aforementioned physicochemical uniqueness, shows exceptional improvement in electrochemical performance (Energy density = 693 Wh kg-1), (Power density = 3341 W kg-1) removing strong stereotype of ceramic solid electrolyte, which beyond those achievable with innovative next generation battery technologies.ope

    Nanobead-reinforced outmost shell of solid-electrolyte interphase layers for suppressing dendritic growth of lithium metal

    Get PDF
    Department of Energy EngineeringDesign of catalyst support for high durability of oxygen electrocatalystPlating-stripping reversibility of lithium metal was improved by reinforcing the solid-electrolyte interphase (SEI) layer by inorganic nanobeads during formation of the SEI layer. The outmost SEI shell (OSS) was clearly identified, which is the SEI layer formed on current collectors (or lithium metal) before the first lithium metal deposition. The OSS was intrinsically brittle and fragile so that the OSS was easily broken by lithium metal dendrites growing along the progress of plating. Lithium metal deposit was not completely stripped back to lithium ions. On the other hand, lithium metal cells containing inorganic nanobeads in electrolyte showed high reversibility between plating and stripping. The nanobeads were incorporated into the OSS during the OSS formation. The nanobead-reinforced OSS having mechanically durable toughness suppressed dendritic growth of lithium metal, not allowing the dendrites to penetrate the OSS. In addition to the mechanical effect of nanobeads, the LiF-rich SEI layer formation was triggered by HF generated by the reaction of the moisture adsorbed on oxide nanobeads with PF6-. The LiF-rich composition was responsible for facile lithium ion transfer through the SEI layer and the OSS in the presence of nanobeads.clos

    Analysis Of The Cyclability Of Lithium-polymer Batteries

    Get PDF
    Comunicación y póster en congresoLithium ion batteries and similar energy storage devices have an increasing importance for the modern society as they are present in many portable electronic devices and have perspectives in the fields of electric vehicles and renewable energy accumulation. Herein, we present results from charge and discharge cycles on batteries under controlled conditions. The cyclability of commercial lithium-polymer pouch batteries under different charge/discharge rates and temperatures was studied. Based on the results, the relationship between the state of charge and the cell voltage was obtained, as well as degradation of the cells, i.e., the decrease of the energy capacity after a number of cycles. The experimental results were compared with simulations based on Newman's model for Lithium Ion Batteries, carried out using the COMSOL Multiphysics® software. The batteries and fuel cell and the heat transfer modules were use to couple between the temperature and the electrochemical interactions. The results show the correlation between temperature, C-rate and degradation in lithium ion batteries. It is specially remarkable the decrease of the apparent capacity of batteries at low temperatures, and the increase of the degradation at higher temperatures. These results are essential for the design of mechanisms that could prevent battery failure.The authors acknowledge the financial support from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 778045, and the "Plan Propio de Investigación y Transferencia de la Universidad de Málaga", code: PPIT.UMA.B5.2018/17

    New Materials and New Configurations for Advanced Electrochemical Capacitors

    Get PDF
    Today, electrochemical capacitors (ECs) have the potential to emerge as a promising energy storage technology. The weakness of EC systems is certainly the limited energy density, which restricts applications to power delivery over only few seconds. As a consequence, many research efforts are focused on designing new materials to improve energy and power densities. These are reviewed below
    corecore