128,040 research outputs found

    Teaching Security Defense Through Web-Based Hacking at the Undergraduate Level

    Full text link
    The attack surface for hackers and attackers is growing every day. Future cybersecurity professionals must have the knowledge and the skills to defend against these cyber attacks. Learning defensive techniques and tools can help defend against today’s attacks but what about tomorrow\u27s? As the types of attacks change so must the cybersecurity professional. The only way for the cybersecurity professional to achieve this nimbleness is to understand the structural anatomy of the various attack types. Understanding the threat environment is the key to future success. Security defense through offensive techniques should and can be taught at the undergraduate level. Using the OWASP Mutillidae project [5], students can have a self-contained, sandbox environment for dissecting and discussing cyber attacks

    Trusted CI Experiences in Cybersecurity and Service to Open Science

    Full text link
    This article describes experiences and lessons learned from the Trusted CI project, funded by the US National Science Foundation to serve the community as the NSF Cybersecurity Center of Excellence. Trusted CI is an effort to address cybersecurity for the open science community through a single organization that provides leadership, training, consulting, and knowledge to that community. The article describes the experiences and lessons learned of Trusted CI regarding both cybersecurity for open science and managing the process of providing centralized services to a broad and diverse community.Comment: 8 pages, PEARC '19: Practice and Experience in Advanced Research Computing, July 28-August 1, 2019, Chicago, IL, US

    CEPS Task Force on Artificial Intelligence and Cybersecurity Technology, Governance and Policy Challenges Task Force Evaluation of the HLEG Trustworthy AI Assessment List (Pilot Version). CEPS Task Force Report 22 January 2020

    Get PDF
    The Centre for European Policy Studies launched a Task Force on Artificial Intelligence (AI) and Cybersecurity in September 2019. The goal of this Task Force is to bring attention to the market, technical, ethical and governance challenges posed by the intersection of AI and cybersecurity, focusing both on AI for cybersecurity but also cybersecurity for AI. The Task Force is multi-stakeholder by design and composed of academics, industry players from various sectors, policymakers and civil society. The Task Force is currently discussing issues such as the state and evolution of the application of AI in cybersecurity and cybersecurity for AI; the debate on the role that AI could play in the dynamics between cyber attackers and defenders; the increasing need for sharing information on threats and how to deal with the vulnerabilities of AI-enabled systems; options for policy experimentation; and possible EU policy measures to ease the adoption of AI in cybersecurity in Europe. As part of such activities, this report aims at assessing the High-Level Expert Group (HLEG) on AI Ethics Guidelines for Trustworthy AI, presented on April 8, 2019. In particular, this report analyses and makes suggestions on the Trustworthy AI Assessment List (Pilot version), a non-exhaustive list aimed at helping the public and the private sector in operationalising Trustworthy AI. The list is composed of 131 items that are supposed to guide AI designers and developers throughout the process of design, development, and deployment of AI, although not intended as guidance to ensure compliance with the applicable laws. The list is in its piloting phase and is currently undergoing a revision that will be finalised in early 2020. This report would like to contribute to this revision by addressing in particular the interplay between AI and cybersecurity. This evaluation has been made according to specific criteria: whether and how the items of the Assessment List refer to existing legislation (e.g. GDPR, EU Charter of Fundamental Rights); whether they refer to moral principles (but not laws); whether they consider that AI attacks are fundamentally different from traditional cyberattacks; whether they are compatible with different risk levels; whether they are flexible enough in terms of clear/easy measurement, implementation by AI developers and SMEs; and overall, whether they are likely to create obstacles for the industry. The HLEG is a diverse group, with more than 50 members representing different stakeholders, such as think tanks, academia, EU Agencies, civil society, and industry, who were given the difficult task of producing a simple checklist for a complex issue. The public engagement exercise looks successful overall in that more than 450 stakeholders have signed in and are contributing to the process. The next sections of this report present the items listed by the HLEG followed by the analysis and suggestions raised by the Task Force (see list of the members of the Task Force in Annex 1)

    A Characterization of Cybersecurity Posture from Network Telescope Data

    Full text link
    Data-driven understanding of cybersecurity posture is an important problem that has not been adequately explored. In this paper, we analyze some real data collected by CAIDA's network telescope during the month of March 2013. We propose to formalize the concept of cybersecurity posture from the perspectives of three kinds of time series: the number of victims (i.e., telescope IP addresses that are attacked), the number of attackers that are observed by the telescope, and the number of attacks that are observed by the telescope. Characterizing cybersecurity posture therefore becomes investigating the phenomena and statistical properties exhibited by these time series, and explaining their cybersecurity meanings. For example, we propose the concept of {\em sweep-time}, and show that sweep-time should be modeled by stochastic process, rather than random variable. We report that the number of attackers (and attacks) from a certain country dominates the total number of attackers (and attacks) that are observed by the telescope. We also show that substantially smaller network telescopes might not be as useful as a large telescope
    corecore