4 research outputs found

    Weighted combination of per-frame recognition results for text recognition in a video stream

    Get PDF
    The scope of uses of automated document recognition has extended and as a result, recognition techniques that do not require specialized equipment have become more relevant. Among such techniques, document recognition using mobile devices is of interest. However, it is not always possible to ensure controlled capturing conditions and, consequentially, high quality of input images. Unlike specialized scanners, mobile cameras allow using a video stream as an input, thus obtaining several images of the recognized object, captured with various characteristics. In this case, a problem of combining the information from multiple input frames arises. In this paper, we propose a weighing model for the process of combining the per-frame recognition results, two approaches to the weighted combination of the text recognition results, and two weighing criteria. The effectiveness of the proposed approaches is tested using datasets of identity documents captured with a mobile device camera in different conditions, including perspective distortion of the document image and low lighting conditions. The experimental results show that the weighting combination can improve the text recognition result quality in the video stream, and the per-character weighting method with input image focus estimation as a base criterion allows one to achieve the best results on the datasets analyzed.This work is partially supported by the Russian Foundation for Basic Research (projects 17-29-03236 and 18-07-01387)

    Advanced document data extraction techniques to improve supply chain performance

    Get PDF
    In this thesis, a novel machine learning technique to extract text-based information from scanned images has been developed. This information extraction is performed in the context of scanned invoices and bills used in financial transactions. These financial transactions contain a considerable amount of data that must be extracted, refined, and stored digitally before it can be used for analysis. Converting this data into a digital format is often a time-consuming process. Automation and data optimisation show promise as methods for reducing the time required and the cost of Supply Chain Management (SCM) processes, especially Supplier Invoice Management (SIM), Financial Supply Chain Management (FSCM) and Supply Chain procurement processes. This thesis uses a cross-disciplinary approach involving Computer Science and Operational Management to explore the benefit of automated invoice data extraction in business and its impact on SCM. The study adopts a multimethod approach based on empirical research, surveys, and interviews performed on selected companies.The expert system developed in this thesis focuses on two distinct areas of research: Text/Object Detection and Text Extraction. For Text/Object Detection, the Faster R-CNN model was analysed. While this model yields outstanding results in terms of object detection, it is limited by poor performance when image quality is low. The Generative Adversarial Network (GAN) model is proposed in response to this limitation. The GAN model is a generator network that is implemented with the help of the Faster R-CNN model and a discriminator that relies on PatchGAN. The output of the GAN model is text data with bonding boxes. For text extraction from the bounding box, a novel data extraction framework consisting of various processes including XML processing in case of existing OCR engine, bounding box pre-processing, text clean up, OCR error correction, spell check, type check, pattern-based matching, and finally, a learning mechanism for automatizing future data extraction was designed. Whichever fields the system can extract successfully are provided in key-value format.The efficiency of the proposed system was validated using existing datasets such as SROIE and VATI. Real-time data was validated using invoices that were collected by two companies that provide invoice automation services in various countries. Currently, these scanned invoices are sent to an OCR system such as OmniPage, Tesseract, or ABBYY FRE to extract text blocks and later, a rule-based engine is used to extract relevant data. While the system’s methodology is robust, the companies surveyed were not satisfied with its accuracy. Thus, they sought out new, optimized solutions. To confirm the results, the engines were used to return XML-based files with text and metadata identified. The output XML data was then fed into this new system for information extraction. This system uses the existing OCR engine and a novel, self-adaptive, learning-based OCR engine. This new engine is based on the GAN model for better text identification. Experiments were conducted on various invoice formats to further test and refine its extraction capabilities. For cost optimisation and the analysis of spend classification, additional data were provided by another company in London that holds expertise in reducing their clients' procurement costs. This data was fed into our system to get a deeper level of spend classification and categorisation. This helped the company to reduce its reliance on human effort and allowed for greater efficiency in comparison with the process of performing similar tasks manually using excel sheets and Business Intelligence (BI) tools.The intention behind the development of this novel methodology was twofold. First, to test and develop a novel solution that does not depend on any specific OCR technology. Second, to increase the information extraction accuracy factor over that of existing methodologies. Finally, it evaluates the real-world need for the system and the impact it would have on SCM. This newly developed method is generic and can extract text from any given invoice, making it a valuable tool for optimizing SCM. In addition, the system uses a template-matching approach to ensure the quality of the extracted information

    Custom OCR for Identity Documents:OCRXNet

    No full text
    Recent advancements in the area of Optical Character Recognition (OCR) using deep learning techniques made it possible to use for real world applications with good accuracy. In this paper we present a system named as OCRXNet. OCRXNetv1, OCRXNetv2 and OCRXNetv3 are proposed and compared on different identity documents. Image processing methods and various text detectors have been used to identify best fitted process for custom ocr of identity documents. We also introduced the end to end pipeline to implement OCR for various use cases.</jats:p
    corecore