151,836 research outputs found
Universal two-step crystallization of DNA-functionalized nanoparticles
We examine the crystallization dynamics of nanoparticles reversibly tethered
by DNA hybridization. We show that the crystallization happens readily only in
a narrow temperature "slot," and always proceeds via a two-step process,
mediated by a highly-connected amorphous intermediate. For lower temperature
quenches, the dynamics of unzipping strands in the amorphous state is
sufficiently slow that crystallization is kinetically hindered. This accounts
for the well-documented difficulty of forming crystals in these systems. The
strong parallel to the crystallization behavior of proteins and colloids
suggests that these disparate systems crystallize in an apparently universal
manner.Comment: Accepted for publication in Soft Matte
Controlling the isothermal crystallization of isodimorphic PBS-ran-PCL random copolymers by varying composition and supercooling
In this work, we study for the first time, the isothermal crystallization behavior of isodimorphic random poly(butylene succinate)-ran-poly(e-caprolactone) copolyesters, PBS-ran-PCL, previously synthesized by us. We perform nucleation and spherulitic growth kinetics by polarized light optical microscopy (PLOM) and overall isothermal crystallization kinetics by differential scanning calorimetry (DSC). Selected samples were also studied by real-time wide angle X-ray diffraction (WAXS). Under isothermal conditions, only the PBS-rich phase or the PCL-rich phase could crystallize as long as the composition was away from the pseudo-eutectic point. In comparison with the parent homopolymers, as comonomer content increased, both PBS-rich and PCL-rich phases nucleated much faster, but their spherulitic growth rates were much slower. Therefore, the overall crystallization kinetics was a strong function of composition and supercooling. The only copolymer with the eutectic composition exhibited a remarkable behavior. By tuning the crystallization temperature, this copolyester could form either a single crystalline phase or both phases, with remarkably different thermal propertiesPeer ReviewedPostprint (published version
Crystallization of triethyl-citrate-plasticized poly(lactic acid) induced by chitin nanocrystals
The aim of this study was to gain a better understanding of the crystallization behavior of triethyl-citrate-plasticized poly(lactic acid) (PLA–TEC) in the presence of chitin nanocrystals (ChNCs). The isothermal crystallization behavior of PLA–TEC was studied by polarized optical microscopy, scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction (XRD). Interestingly, the addition of just 1 wt % ChNCs in PLA–TEC increased the crystallization rate in the temperature range of 135–125 °C. The microscopy studies confirmed the presence of at least three distinct types of spherulites: negative, neutral, and ring banded. The ChNCs also increased the degree of crystallinity up to 32%, even at a fast cooling rate of 25¿°C min-1. The XRD studies further revealed the nucleation effect induced by the addition of ChNCs and thus explained the faster crystallization rate. To conclude, the addition of a small amount (1 wt %) of ChNC to plasticized PLA significantly affected its nucleation, crystal size, and crystallization speed; therefore, the proposed route can be considered suitable for improving the crystallization behavior of PLA.Peer ReviewedPostprint (author's final draft
Strain Rate Induced Crystallization in Bulk Metallic Glass-Forming Liquid
We report on the solidification of Au49Ag5.5Pd2.3Cu26.9Si16.3 bulk metallic glass under various strain rates. Using a copper mold casting technique with a low strain rate during solidification, this alloy is capable of forming glassy rods of at least 5 mm in diameter. Surprisingly, when the liquid alloy is splat cooled at much higher cooling rates and large strain rates, the solidified alloy is no longer fully amorphous. Our finding suggests that the large strain rate during splat cooling induces crystallization. The pronounced difference in crystallization behavior cannot be explained by the previously observed strain rate effect on viscosity alone. A strain rate induced phase separation process is suggested as one of the explanations for this crystallization behavior. The strain-rate-dependent critical cooling rate must be considered in order to assess the intrinsic glass forming ability of metallic liquid
In situ visualization of Ni-Nb bulk metallic glasses phase transition
We report the results of the Ni-based bulk metallic glass structural
evolution and crystallization behavior in situ investigation. The X-ray
diffraction (XRD), transmission electron microscopy (TEM), nano-beam
diffraction (NBD), differential scanning calorimetry (DSC), radial distribution
function (RDF) and scanning probe microscopy/spectroscopy (STM/STS) techniques
were applied to analyze the structure and electronic properties of Ni63.5Nb36.5
glasses before and after crystallization. It was proved that partial surface
crystallization of Ni63.5Nb36.5 can occur at the temperature lower than for the
full sample crystallization. According to our STM measurements the primary
crystallization is originally starting with the Ni3Nb phase formation. It was
shown that surface crystallization drastically differs from the bulk
crystallization due to the possible surface reconstruction. The mechanism of
Ni63.5Nb36.5 glass alloy 2D-crystallization was suggested, which corresponds to
the local metastable (3x3)-Ni(111) surface phase formation. The possibility of
different surface nano-structures development by the annealing of the
originally glassy alloy in ultra high vacuum at the temperature lower, than the
crystallization temperature was shown. The increase of mean square surface
roughness parameter Rq while moving from glassy to fully crystallized state can
be caused by concurrent growth of Ni3Nb and Ni6Nb7 bulk phases. The simple
empirical model for the estimation of Ni63.5Nb36.5 cluster size was suggested,
and the obtained values (7.64 A, 8.08 A) are in good agreement with STM
measurements data (8 A-10 A)
A computationally efficient inorganic atmospheric aerosol phase equilibrium model (UHAERO)
A variety of thermodynamic models have been developed to predict inorganic gas-aerosol equilibrium. To achieve computational efficiency a number of the models rely on a priori specification of the phases present in certain relative humidity regimes. Presented here is a new computational model, named UHAERO, that is both efficient and rigorously computes phase behavior without any a priori specification. The computational implementation is based on minimization of the Gibbs free energy using a primal-dual method, coupled to a Newton iteration. The mathematical details of the solution are given elsewhere. The model also computes deliquescence and crystallization behavior without any a priori specification of the relative humidities of deliquescence or crystallization. Detailed phase diagrams of the sulfate/nitrate/ammonium/water system are presented as a function of relative humidity at 298.15 K over the complete space of composition
Thermal behavior of polytriazole films: a thermal analysis study
The thermal behavior of poly(1,3-phenyl-1,4-phenyl)-4-phenyl-1,2,4-triazole has been investigated using different scanning calorimetry (DSC) and thermogravimetry (TG). Processes are studied for this thermally stable polymer that take place between 200 and 500°C. While the polycondensation reaction product in powder from appeared to be partially crystalline, films prepared by casting from a formic acid solution appeared to be completely amorphous. A thermal treatment between Tg(~ 270°C) and Tm(~430°C) can introduce crystallinity in the films because of the polymer's ability to cold crystallize. The cold crystallization temperature Tc seems to be dependent on the preparation history of the solid polymer phase. Thermal annealing of the films just below Tg does not introduce crystallinity but inhibits subsequent cold crystallization at higher temperatures. Crystallization upon cooling from the crystalline melt has not been observed either. At temperatures just above the crystalline melting point the polymer starts to decompose in an exothermic reaction
Timescales of crystallization and viscous flow of the bulk glass-forming Zr-Ti-Ni-Cu-Be alloys
Crystallization behavior and equilibrium viscosity of a series of alloys in the Zr-Ti-Cu-Ni-Be system are studied using multiple techniques to determine the various contributions to glass-forming ability. Low-temperature time-temperature-transformation diagrams of alloys whose compositions lie at equally spaced points along the tie line from Zr38.5Ti16.5Cu15.25Ni9.75Be20 to Zr46.25Ti8.25Cu7.5Ni10Be27.5 are measured during isothermal annealing of initially amorphous specimens. Surprisingly, for all investigated alloys, a primary quasicrystalline phase forms at a rate which varies substantially with alloy composition. Subsequent constant heating measurements, x-ray-diffraction patterns obtained after various states of annealing, beam bending viscosity results, and previous thermal analysis are all used to describe the influences on crystallization in this series. The description of both the kinetic and thermodynamic aspects of crystallization allows for an explanation of the crystallization mechanism. In addition, it explains why, in this series, thermal stability is greatest in those alloys with the poorest glass-forming ability. Overall, the investigations reveal that simple criteria like thermal stability or high viscosity fail to predict the glass-forming ability in complex bulk glass-forming systems
- …
