182,794 research outputs found
Tailoring crystallinity of electrospun Plla fibres by control of electrospinning parameters
Poly(L-lactic acid) (PLLA) fibers were fabricated by electrospinning. The effects of various electrospinning process parameters on the thermal properties, especially the crystallinity of the electrospun fibers were investigated. Thermal analysis of the fibers revealed that they exhibited degree of crystallinity ranging from 23% to 46% while that for the as-received granules was approximately 37%, suggesting that the crystallinity of electrospun PLLA fibres can be controlled by optimizing the electrospinning process. This finding is very important because crystallinity affects polymer properties such as degradation, stiffness,yield stress, modulus and tensile strength, solubility, optical and electrical properties which will in turn affect the behavior of these materials when they are utilized in energy,environment, defense and security applications. The results presented in this paper show that the degree of crystallinity of the electrospun fibers decreased with increasing the polymer solution concentration. Furthermore, an optimum electrospinning voltage at which maximum degree of crystallinity can be obtained was observed. At voltages higher or lower than the optimum electrospinning voltage, the degree of rystallinity will decrease or increase,respectively. The effect of the needle tip to collector distance (NTCD) on the degree of\ud
crystallinity follows no predictable and consistent pattern
Crystalline silicates as a probe of disk formation history
We present a new perspective on the crystallinity of dust in protoplanetary
disks. The dominant crystallization by thermal annealing happens in the very
early phases of disk formation and evolution. Both the disk properties and the
level of crystallinity are thereby directly linked to the properties of the
molecular cloud core from which the star+disk system was formed. We show that,
under the assumption of single star formation, rapidly rotating clouds produce
disks which, after the main infall phase (i.e. in the optically revealed class
II phase), are rather massive and have a high accretion rate but low
crystallinity. Slowly rotating clouds, on the other hand, produce less massive
disks with lower accretion rate, but high levels of crystallinity. Cloud
fragmentation and the formation of multiple stars complicates the problem and
necessitates further study. The underlying physics of the model is
insufficiently understood to provide the precise relationship between
crystallinity, disk mass and accretion rate. But the fact that with `standard'
input physics the model produces disks which, in comparison to observations,
appear to have either too high levels of crystallinity or too high disk masses,
demonstrates that the comparison of these models to observations can place
strong contraints on the disk physics. The question to ask is not why some
sources are so crystalline, but why some other sources have such a low level of
crystallinity.Comment: Accepted for publication in ApJ
Understanding crystallinity in aromatic polyimides
Aromatic polyimides are a class of polymers that show remarkable thermal stability, strength, and toughness. These properties make them attractive candidates for use in high-performance carbon fiber composites for airborne and spaceborne structural components. Our research centered on the development of an understanding of the underlying process of crystallite formation in a particular class of aryl polyimides for which there are some x-ray crystallographic data available. The ultimate aim of the project is to be able to develop a model sufficiently flexible to be able, on the basis of the chemical structure of a polymer in this class, to predict: (1) whether it will be prone to form crystallites; (2) crystallographic features of the crystallites; and (3) synthesis and/or processing conditions that will be favorable or unfavorable to crystallite formation. This will provide guidance to the laboratory chemists in their choice of candidate polymers and processing methods
Mineral maturity and crystallinity index are distinct characteristics of bone mineral
The purpose of this study was to test the hypothesis that mineral maturity and crystallinity index are two different characteristics of bone mineral. To this end, Fourier transform infrared microspectroscopy (FTIRM) was used. To test our hypothesis, synthetic apatites and human bone samples were used for the validation of the two parameters using FTIRM. Iliac crest samples from seven human controls and two with skeletal fluorosis were analyzed at the bone structural unit (BSU) level by FTIRM on sections 2–4 lm thick. Mineral maturity and crystallinity index were highly correlated in synthetic apatites but poorly correlated in normal human bone. In skeletal fluorosis, crystallinity index was increased and maturity decreased, supporting the fact of separate measurement of these two parameters. Moreover, results obtained in fluorosis suggested that mineral characteristics can be modified independently of bone remodeling. In conclusion, mineral maturity and crystallinity index are two different parameters measured separately by FTIRM and offering new perspectives to assess bone mineral traits in osteoporosis
Recommended from our members
Cellulose hydrolysis by Clostridium thermocellum is agnostic to substrate structural properties in contrast to fungal cellulases
Structural investigations of poly(ethylene terephthalate)- graft-polystyrene copolymer films
Structural investigations of poly(ethylene terephthalate)-graft-polystyrene (PET-g-PS) films prepared by radiation-induced grafting of styrene onto commercial poly- (ethylene terephthalate) (PET) films were carried out by FTIR, X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The variation in the degree of crystallinity and the thermal characteristics of PETfilms was correlated withthe amount of polystyrene grafted therein (i.e., the degree of grafting). The heat of melting was found to be a function of PET crystalline fraction in the grafted films. The grafting is found to take place by incorporation of amorphous polystyrene grafts in the entire noncrystalline (amorphous) region of the PET films and at the surface of the crystallites. This results in a decrease in the degree of crystallinity with the increase in the degree of grafting, attributed to the dilution of PET crystalline structure with the amorphous polystyrene, without almost any disruption in the inherent crystallinity
Local Complexity of Delone Sets and Crystallinity
This paper characterizes when a Delone set X is an ideal crystal in terms of
restrictions on the number of its local patches of a given size or on the
hetereogeneity of their distribution. Let N(T) count the number of
translation-inequivalent patches of radius T in X and let M(T) be the minimum
radius such that every closed ball of radius M(T) contains the center of a
patch of every one of these kinds. We show that for each of these functions
there is a `gap in the spectrum' of possible growth rates between being bounded
and having linear growth, and that having linear growth is equivalent to X
being an ideal crystal. Explicitly, for N(T), if R is the covering radius of X
then either N(T) is bounded or N(T) >= T/2R for all T>0. The constant 1/2R in
this bound is best possible in all dimensions. For M(T), either M(T) is bounded
or M(T) >= T/3 for all T>0. Examples show that the constant 1/3 in this bound
cannot be replaced by any number exceeding 1/2. We also show that every
aperiodic Delone set X has M(T) >= c(n)T for all T>0, for a certain constant
c(n) which depends on the dimension n of X and is greater than 1/3 when n > 1.Comment: 26 pages. Uses latexsym and amsfonts package
Crystallinity versus mass-loss rate in Asymptotic Giant Branch stars
Infrared Space Observatory (ISO) observations have shown that O-rich
Asymptotic Giant Branch (AGB) stars exhibit crystalline silicate features in
their spectra only if their mass-loss rate is higher than a certain threshold
value. Usually, this is interpreted as evidence that crystalline silicates are
not present in the dust shells of low mass-loss rate objects. In this study,
radiative transfer calculations have been performed to search for an
alternative explanation to the lack of crystalline silicate features in the
spectrum of low mass-loss rate AGB stars. It is shown that due to a temperature
difference between amorphous and crystalline silicates it is possible to
include up to 40% of crystalline silicate material in the circumstellar dust
shell, without the spectra showing the characteristic spectral features. Since
this implies that low mass-loss rate AGB stars might also form crystalline
silicates and deposit them into the Interstellar Medium (ISM), the described
observational selection effect may put the process of dust formation around AGB
stars and the composition of the predominantly amorphous dust in the
Interstellar Medium in a different light. Our model calculations result in a
diagnostic tool to determine the crystallinity of an AGB star with a known
mass-loss rate.Comment: accepted by A&A, 10 pages, 11 figure
- …
