449,602 research outputs found

    BEC-BCS Crossover in the Nambu--Jona-Lasinio Model of QCD

    Get PDF
    The BEC-BCS crossover in QCD at finite baryon and isospin chemical potentials is investigated in the Nambu--Jona-Lasinio model. The diquark condensation in two color QCD and the pion condensation in real QCD would undergo a BEC-BCS crossover when the corresponding chemical potential increases. We determined the crossover chemical potential as well as the BEC and BCS regions. The crossover is not triggered by increasing the strength of attractive interaction among quarks but driven by changing the charge density. The chiral symmetry restoration at finite temperature and density plays an important role in the BEC-BCS crossover. For real QCD, strong couplings in diquark and vector meson channels can induce a diquark BEC-BCS crossover in color superconductor, and in the BEC region the chromomagnetic instability is fully cured and the ground state is a uniform phase.Comment: 18 pages, 15 figures. V2: typos corrected, references added. V3: typos in Appendix B correcte

    A simple two-module problem to exemplify building-block assembly under crossover

    No full text
    Theoretically and empirically it is clear that a genetic algorithm with crossover will outperform a genetic algorithm without crossover in some fitness landscapes, and vice versa in other landscapes. Despite an extensive literature on the subject, and recent proofs of a principled distinction in the abilities of crossover and non-crossover algorithms for a particular theoretical landscape, building general intuitions about when and why crossover performs well when it does is a different matter. In particular, the proposal that crossover might enable the assembly of good building-blocks has been difficult to verify despite many attempts at idealized building-block landscapes. Here we show the first example of a two-module problem that shows a principled advantage for cross-over. This allows us to understand building-block assembly under crossover quite straightforwardly and build intuition about more general landscape classes favoring crossover or disfavoring it

    Symmetry Preservation and Critical Fluctuations in a Pseudospin Crossover Perovskite LaCoO3_3

    Full text link
    Spin-state crossover beyond a conventional ligand-field theory has been a fundamental issue in condensed matter physics. Here, we report microscopic observations of spin states and low-energy dynamics through orbital-resolved NMR spectroscopy in the prototype compound LaCoO3_3. The 59^{59}Co NMR spectrum shows the preserved crystal symmetry across the crossover, inconsistent with dd orbital ordering due to the Jahn-Teller distortion. The orbital degeneracy results in a pseudospin (J~=1\tilde{J} = 1) excited state with an orbital moment observed as 59^{59}Co hyperfine coupling tensors. We found that the population of the excited state evolves above the heart crossover temperature. The crossover involves critical spin-state fluctuations emerging under the magnetic field. These results suggest that the spin-state crossover can be mapped into a statistical problem, analogous to the supercritical liquid in liquid-gas transition.Comment: 5 pages, 5 figure

    Band-edge BCS-BEC crossover in a two-band superconductor: physical properties and detection parameters

    Full text link
    Superconductivity in iron-based, magnesium diborides, and other novel superconducting materials has a strong multi-band and multi-gap character. Recent experiments support the possibillity for a BCS-BEC crossover induced by strong-coupling and proximity of the chemical potential to the band edge of one of the bands. Here we study the simplest theoretical model which accounts for the BCS-BEC crossover in a two-band superconductor, considering tunable interactions and tunable energy separations between the bands. Mean-field results for condensate fraction, correlation length, and superconducting gap are reported in typical crossover diagrams to locate the boundaries of the BCS, crossover, and BEC regimes. When the superconducting gap is of the order of the local chemical potential, superconductivity is in the crossover regime of the BCS-BEC crossover and the Fermi surface of the small band is smeared by the gap opening. In this situation, small and large Cooper pairs coexist in the total condensate, which is the optimal condition for high-Tc superconductivity. The ratio between the gap and the Fermi energy in a given band results to be the best detection parameter for experiments to locate the system in the BCS-BEC crossover. Using available experimental data, our analysis shows that iron-based superconductors have the partial condensate of the small Fermi surface in the crossover regime of the BCS-BEC crossover, supporting the recent ARPES findings.Comment: 10 pages, 8 figures, submitted to SUST (Multicomponent Superconductivity

    Reading Books and Reading Minds: Differential Effects of Wonder and The Crossover on Empathy and Theory of Mind

    Get PDF
    We tested sixth graders for empathy and theory of mind before and after an academic unit on either Wonder or The Crossover. Wonder was associated with improved perspective-taking; students who read The Crossover increased in concern for others. Faux pas detection increased in both genders with Wonder, and in girls with The Crossover. Students who read The Crossover in print showed improved understanding of facial expressions, while students who used iPads declined. Young adult fiction is associated with improved social cognitive skills, but effects depend on gender and reading format, as well as on the choice of individual book

    Optimal and efficient crossover designs for comparing test treatments with a control treatment

    Full text link
    This paper deals exclusively with crossover designs for the purpose of comparing t test treatments with a control treatment when the number of periods is no larger than t+1. Among other results it specifies sufficient conditions for a crossover design to be simultaneously A-optimal and MV-optimal in a very large and appealing class of crossover designs. It is expected that these optimal designs are highly efficient in the entire class of crossover designs. Some computationally useful tools are given and used to build assorted small optimal and efficient crossover designs. The model robustness of these newly discovered crossover designs is discussed.Comment: Published at http://dx.doi.org/10.1214/009053604000000887 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Crossover scaling in two dimensions

    Full text link
    We determine the scaling functions describing the crossover from Ising-like critical behavior to classical critical behavior in two-dimensional systems with a variable interaction range. Since this crossover spans several decades in the reduced temperature as well as in the finite-size crossover variable, it has up to now largely evaded a satisfactory numerical determination. Using a new Monte Carlo method, we could obtain accurate results for sufficiently large interactions ranges. Our data cover the full crossover region both above and below the critical temperature and support the hypothesis that the crossover functions are universal. Also the so-called effective exponents are discussed and we show that these can vary nonmonotonically in the crossover region.Comment: 24 pages RevTeX 3.0/3.1, including 22 PostScript figures. Uses epsf.st

    Dimensional crossover in quantum critical metallic magnets

    Full text link
    Nearly magnetic metals often have layered lattice structures, consisting of coupled planes. In such a situation, physical properties will display, upon decreasing temperature or energy, a dimensional crossover from two-dimensional (2d) to three-dimensional (3d) behavior, which is particularly interesting near quantum criticality. Here we study this crossover in thermodynamics using a suitably generalized Landau-Ginzburg-Wilson approach to the critical behavior, combined with renormalization group techniques. We focus on two experimentally relevant cases: the crossover from a 2d to a 3d antiferromagnet, and the crossover from a 2d ferromagnet to a 3d antiferromagnet. We discuss the location of phase boundary and crossover lines and determine the crossover functions for important thermodynamic quantities. As naive scaling does not apply at and above the upper critical dimension, two crossover scales arise which can be associated with separate dimensional crossovers of classical and quantum fluctuations, respectively. In particular, we find an intermediate regime with novel power laws where the quantum fluctuations still have a 2d and the classical fluctuations already have a 3d character. For the ferromagnet-to-antiferromagnet crossover, the mismatch of the dynamical exponents between the 2d and 3d regimes leads to an even richer crossover structure, with an interesting 2d non-critical regime sandwiched between two critical regimes. For all cases, we find that thermal expansion and compressibility are particularly sensitive probes of the dimensional crossover. Finally, we relate our results to experiments on the quantum critical heavy-fermion metals CeCu(6-x)Au(x), YbRh(2)Si(2) and CeCoIn(5).Comment: 18 pages, 8 figures, published versio

    Crossover phenomena in spin models with medium-range interactions and self-avoiding walks with medium-range jumps

    Full text link
    We study crossover phenomena in a model of self-avoiding walks with medium-range jumps, that corresponds to the limit N0N\to 0 of an NN-vector spin system with medium-range interactions. In particular, we consider the critical crossover limit that interpolates between the Gaussian and the Wilson-Fisher fixed point. The corresponding crossover functions are computed using field-theoretical methods and an appropriate mean-field expansion. The critical crossover limit is accurately studied by numerical Monte Carlo simulations, which are much more efficient for walk models than for spin systems. Monte Carlo data are compared with the field-theoretical predictions concerning the critical crossover functions, finding a good agreement. We also verify the predictions for the scaling behavior of the leading nonuniversal corrections. We determine phenomenological parametrizations that are exact in the critical crossover limit, have the correct scaling behavior for the leading correction, and describe the nonuniversal lscrossover behavior of our data for any finite range.Comment: 43 pages, revte

    Nano-electromanipulation of Spin Crossover Nanorods: Towards Switchable Nanoelectronic Devices

    Get PDF
    The nanoscale manipulation and charge transport properties of the [Fe(Htrz)2(trz)](BF4) spin-crossover compound is demonstrated. Such 1D spin-crossover nanostructures are attractive building blocks for nanoelectronic switching and memory devices
    corecore