19,355 research outputs found

    Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g

    Get PDF
    Crista junctions (CJs) are important for mitochondrial organization and function, but the molecular basis of their formation and architecture is obscure. We have identified and characterized a mitochondrial membrane protein in yeast, Fcj1 (formation of CJ protein 1), which is specifically enriched in CJs. Cells lacking Fcj1 lack CJs, exhibit concentric stacks of inner membrane in the mitochondrial matrix, and show increased levels of F1FO–ATP synthase (F1FO) supercomplexes. Overexpression of Fcj1 leads to increased CJ formation, branching of cristae, enlargement of CJ diameter, and reduced levels of F1FO supercomplexes. Impairment of F1FO oligomer formation by deletion of its subunits e/g (Su e/g) causes CJ diameter enlargement and reduction of cristae tip numbers and promotes cristae branching. Fcj1 and Su e/g genetically interact. We propose a model in which the antagonism between Fcj1 and Su e/g locally modulates the F1FO oligomeric state, thereby controlling membrane curvature of cristae to generate CJs and cristae tips

    Functional and Biogenetical Heterogeneity of the Inner Membrane of Rat-Liver Mitochondria

    Get PDF
    Rat liver mitochondria were fragmented by a combined technique of swelling, shrinking, and sonication. Fragments of inner membrane were separated by density gradient centrifugation. They differed in several respects: electronmicroscopic appearance, phospholipid and cytochrome contents, electrophoretic behaviour of proteins and enzymatic activities. Three types of inner membrane fractions were isolated. The first type is characterized by a high activity of metal chelatase, low activities of succinate-cytochrome c reductase and of glycerolphosphate dehydrogenase, as well as by a high phospholipid content and low contents of cytochromes aa3 and b. The second type displays maximal activities of glycerolphosphate dehydrogenase and metal chelatase, but contains relatively little cytochromes and has low succinate-cytochrome c reductase activity. The third type exhibits highest succinate-cytochrome c reductase activity, a high metal chelatase activity and highest cytochrome contents. However, this fraction was low in both glycerolphosphate dehydrogenase activity and phospholipid content. This fraction was also richest in the following enzyme activities: cytochrome oxidase, oligomycin-sensitive ATPase, proline oxidase, 3-hydroxybutyrate dehydrogenase and rotenone-sensitive NADH-cytochrome c reductase. Amino acid incorporation in vitro and in vivo in the presence of cycloheximide occurs predominantly into inner membrane fractions from the second type. These data suggest that the inner membrane is composed of differently organized parts, and that polypeptides synthesized by mitochondrial ribosomes are integrated into specific parts of the inner membrane

    Role of the Mitochondrial Genome During Early Development in Mice

    Get PDF
    The role of the mitochondrial genome in early development and differentiation was studied in mouse embryos cultured in vitro from the two to four cell stage to the blastocyst (about 100 cells). During this period the mitochondria undergo morphological differentiation: progressive enlargement followed by an increase in matrix density, in number of cristae, and in number of mitochondrial ribosomes. Mitochondrial ribosomal and transfer RNA synthesis occurs from the 8 to 16 cell stage on and contributes to the establishment of a mitochondrial protein-synthesizing system. Inhibition of mitochondrial RNA- and protein-synthesis by 0.1 µg/ml of ethidium bromide or 31.2 µg/ml of chloramphenicol permits essentially normal embryo development and cellular differentiation. Mitochondrial morphogenesis is also nearly normal except for the appearance of dilated and vesicular cristae in blastocyst mitochondria. Such blastocysts are capable of normal postimplantation development when transplanted into the uteri of foster mothers. Higher concentrations of these inhibitors have general toxic effects and arrest embryo development. It is concluded that mitochondrial differentiation in the early mouse embryo occurs through the progressive transformation of the preexisting mitochondria and is largely controlled by the nucleocytoplasmic system. Mitochondrial protein synthesis is required for the normal structural organization of the cristae in blastocyst mitochondria. Embryo development and cellular differentiation up to the blastocyst stage are not dependent on mitochondrial genetic activity

    Expression of the Mitochondrial Genome in HeLa Cells. XV. Effect of Inhibition of Mitochondrial Protein Synthesis on Mitochondrial Formation

    Get PDF
    The effect of selective inhibition of mitochondrial protein synthesis by chloramphenicol at 40 or 200 µg/ml on the formation of mitochondria in HeLa cells was investigated. HeLa cells, under the conditions used in the present work, grow at a decreasing rate for at least four cell generations in the presence of 40 µg/ml chloramphenicol, and for two generations in the presence of 200 µg/ml chloramphenicol. The progressive cell growth inhibition which begins after 2 days of exposure of the cells to 40 µg/ml chloramphenicol is immediately or gradually reversible, upon removal of the drug, for periods up to at least 8 days of treatment, though there is a progressive loss of cloning efficiency. In cells which have been treated for 6–7 days with 40 or 200 µg/ml of chloramphenicol, mitochondrial protein synthesis occurs at a normal or near-normal rate 1 h after removal of the drug. Mitochondria increase normally in number and show a normal size and amount of cristae in the presence of either concentration of drug. However, in 4–5% of the mitochondrial profiles the cristae appear to be arranged in unusual, circular, looped or whorled configuration

    New species and records of Anacis (Hymenoptera: Ichneumonidae: Cryptini) from tropical and temperate Andean South America

    Get PDF
    Descriptions are given of the new species Anacis ignifera and A. flammigera from Mérida State, Venezuela and of A. umbrifera from Machu Picchu, Perú. These belong to a tropical Andean lineage with strongly projecting propodeal cristae and pictured wings. Anacis hercana Porter, a Chilean species long known only from the holotype taken at El Canelo near Santiago, now is documented by a second specimen from nearby Río Clarillo. Biconus Townes (1969) is synonymized under Anacis Porter (1967a). Anacis apoeca (Porter), A. atrorubra (Townes), and A. subflava (Porter) are new combinations in Anacis. The South American species of Anacis are keyed.Se describen las especies nuevas Anacis ignifera y A. flammigera, del Estado de Mérida en Venezuela y A. umbrifera de Machu Picchu, Perú. Pertenecen éstas tres a un linaje propio de la pluviselva alto andina tropical, el cual tiene muy grandes y proyectadas las crestas del propodeo, y las alas con extensas manchas oscuras. Anacis hercana Porter, antes conocida sólo del holotipo colectado en El Canelo cerca de Santiago de Chile, se cita ahora de la vecina Reserva Natural de Río Clarillo. Biconus Townes (1969) se considera sinónimo de Anacis Porter (1967a), siendo nuevas las combinaciones: Anacis apoeca (Porter), A. atrorubra (Townes), y A. subflava (Porter). Se proporciona una clave de las especies sudamericanas de Anacis

    In vitro characterization of mitochondrial function and structure in rat and human cells with a deficiency of the NADH:ubiquinone oxidoreductase Ndufc2 subunit

    Get PDF
    Ndufc2, a subunit of the NADH:ubiquinone oxidoreductase, plays a key role in the assembly and activity of complex I within the mitochondrial OXPHOS chain. Its deficiency has been shown to be involved in diabetes, cancer and stroke. To improve our knowledge on the mechanisms underlying the increased disease risk due to Ndufc2 reduction, we performed the present in vitro study aimed at the fine characterization of the derangements in mitochondrial structure and function consequent to Ndufc2 deficiency. We found that both fibroblasts obtained from skin of heterozygous Ndufc2 knock-out rat model showed marked mitochondrial dysfunction and PBMC obtained from subjects homozygous for the TT genotype of the rs11237379/NDUFC2 variant, previously shown to associate with reduced gene expression, demonstrated increased generation of reactive oxygen species and mitochondrial damage. The latter was associated with increased oxidative stress and significant ultrastructural impairment of mitochondrial morphology with a loss of internal cristae. In both models the exposure to stress stimuli, such as high-NaCl concentration or LPS, exacerbated the mitochondrial damage and dysfunction. Resveratrol significantly counteracted the ROS generation. These findings provide additional insights on the role of an altered pattern of mitochondrial structure-function as a cause of human diseases. In particular, they contribute to underscore a potential genetic risk factor for cardiovascular diseases, including stroke

    A Splicing Mutation in the Novel Mitochondrial Protein DNAJC11 Causes Motor Neuron Pathology Associated with Cristae Disorganization, and Lymphoid Abnormalities in Mice

    Get PDF
    Mitochondrial structure and function is emerging as a major contributor to neuromuscular disease, highlighting the need for the complete elucidation of the underlying molecular and pathophysiological mechanisms. Following a forward genetics approach with N-ethyl-N-nitrosourea (ENU)-mediated random mutagenesis, we identified a novel mouse model of autosomal recessive neuromuscular disease caused by a splice-site hypomorphic mutation in a novel gene of unknown function, DnaJC11. Recent findings have demonstrated that DNAJC11 protein co-immunoprecipitates with proteins of the mitochondrial contact site (MICOS) complex involved in the formation of mitochondrial cristae and cristae junctions. Homozygous mutant mice developed locomotion defects, muscle weakness, spasticity, limb tremor, leucopenia, thymic and splenic hypoplasia, general wasting and early lethality. Neuropathological analysis showed severe vacuolation of the motor neurons in the spinal cord, originating from dilatations of the endoplasmic reticulum and notably from mitochondria that had lost their proper inner membrane organization. The causal role of the identified mutation in DnaJC11 was verified in rescue experiments by overexpressing the human ortholog. The full length 63 kDa isoform of human DNAJC11 was shown to localize in the periphery of the mitochondrial outer membrane whereas putative additional isoforms displayed differential submitochondrial localization. Moreover, we showed that DNAJC11 is assembled in a high molecular weight complex, similarly to mitofilin and that downregulation of mitofilin or SAM50 affected the levels of DNAJC11 in HeLa cells. Our findings provide the first mouse mutant for a putative MICOS protein and establish a link between DNAJC11 and neuromuscular diseases

    New crania from Seymour Island (Antarctica) shed light on anatomy of Eocene penguins

    Get PDF
    Antarctic skulls attributable to fossil penguins are rare. Three new penguin crania from Antarctica are here described providing an insight into their feeding function. One of the specimens studied is largely a natural endocast, slightly damaged, and lacking preserved osteological details. Two other specimens are the best preserved fossil penguin crania from Antarctica, enabling the study of characters not observed so far. All of them come from the uppermost Submeseta Allomember of the La Meseta Formation (Eocene–?Oligocene), Seymour (Marambio) Island, Antarctic Peninsula. The results of the comparative studies suggest that Paleogene penguins were long−skulled birds, with strong nuchal crests and deep temporal fossae. The configuration of the nuchal crests, the temporal fossae, and the parasphenoidal processes, appears to indicate the presence of powerful muscles. The nasal gland sulcus devoid of a supraorbital edge is typical of piscivorous species.Fil: Acosta Hospitaleche, Carolina Ileana Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo. División Paleontología Vertebrados; Argentin

    Bacterial porin disrupts mitochondrial membrane potential and sensitizes host cells to apoptosis

    Get PDF
    The bacterial PorB porin, an ATP-binding beta-barrel protein of pathogenic Neisseria gonorrhoeae, triggers host cell apoptosis by an unknown mechanism. PorB is targeted to and imported by host cell mitochondria, causing the breakdown of the mitochondrial membrane potential (delta psi m). Here, we show that PorB induces the condensation of the mitochondrial matrix and the loss of cristae structures, sensitizing cells to the induction of apoptosis via signaling pathways activated by BH3-only proteins. PorB is imported into mitochondria through the general translocase TOM but, unexpectedly, is not recognized by the SAM sorting machinery, usually required for the assembly of beta-barrel proteins in the mitochondrial outer membrane. PorB integrates into the mitochondrial inner membrane, leading to the breakdown of delta psi m. The PorB channel is regulated by nucleotides and an isogenic PorB mutant defective in ATP-binding failed to induce delta psi m loss and apoptosis, demonstrating that dissipation of delta psi m is a requirement for cell death caused by neisserial infection
    corecore