108,159 research outputs found
Myocardial creatine levels do not influence response to acute oxidative stress in isolated perfused heart
Background: Multiple studies suggest creatine mediates anti-oxidant activity in addition to its established role in cellular
energy metabolism. The functional significance for the heart has yet to be established, but antioxidant activity could
contribute to the cardioprotective effect of creatine in ischaemia/reperfusion injury.
Objectives: To determine whether intracellular creatine levels influence responses to acute reactive oxygen species (ROS)
exposure in the intact beating heart. We hypothesised that mice with elevated creatine due to over-expression of the
creatine transporter (CrT-OE) would be relatively protected, while mice with creatine-deficiency (GAMT KO) would fare
worse.
Methods and Results: CrT-OE mice were pre-selected for creatine levels 20–100% above wild-type using in vivo 1
H–
MRS.
Hearts were perfused in isovolumic Langendorff mode and cardiac function monitored throughout. After 20 min
equilibration, hearts were perfused with either H2O2 0.5 mM (30 min), or the anti-neoplastic drug doxorubicin 15 mM
(100 min). Protein carbonylation, creatine kinase isoenzyme activities and phospho-PKCd expression were quantified in
perfused hearts as markers of oxidative damage and apoptotic signalling. Wild-type hearts responded to ROS challenge
with a profound decline in contractile function that was ameliorated by co-administration of catalase or dexrazoxane as
positive controls. In contrast, the functional deterioration in CrT-OE and GAMT KO hearts was indistinguishable from wildtype
controls, as was the extent of oxidative damage and apoptosis. Exogenous creatine supplementation also failed to
protect hearts from doxorubicin-induced dysfunction.
Conclusions: Intracellular creatine levels do not influence the response to acute ROS challenge in the intact beating heart,
arguing against creatine exerting (patho-)physiologically relevant anti-oxidant activity
Creatine formation in liver and in kidney
We reported recently (1) the formation of creatine from glycocyamine by rat liver slices; and that 40 to 50 per cent more creatine was formed when methionine was added with the glycocyamine to the Ringer’s solution in which the slices were immersed. Among some thirty odd amino acids, methylated amines, a methylated purine, and betaine only methionine gave this increased rate of methylation. The rate of creatine formation under these conditions is sufficient, if it is of the same order of magnitude in vivo, to make good the entire loss as urinary creatinine
Ribose supplementation alone or with elevated creatine does not preserve high energy nucleotides or cardiac function in the failing mouse heart
Background: Reduced levels of creatine and total adenine nucleotides (sum of ATP, ADP and AMP) are hallmarks of chronic
heart failure and restoring these pools is predicted to be beneficial by maintaining the diseased heart in a more favourable
energy state. Ribose supplementation is thought to support both salvage and re-synthesis of adenine nucleotides by
bypassing the rate-limiting step. We therefore tested whether ribose would be beneficial in chronic heart failure in control
mice and in mice with elevated myocardial creatine due to overexpression of the creatine transporter (CrT-OE).
Methods and Results: Four groups were studied: sham; myocardial infarction (MI); MI+ribose; MI+CrT-OE+ribose. In a pilot
study, ribose given in drinking water was bioavailable, resulting in a two-fold increase in myocardial ribose-5-phosphate
levels. However, 8 weeks post-surgery, total adenine nucleotide (TAN) pool was decreased to a similar amount (8–14%) in all
infarcted groups irrespective of the treatment received. All infarcted groups also presented with a similar and substantial
degree of left ventricular (LV) dysfunction (3-fold reduction in ejection fraction) and LV hypertrophy (32–47% increased
mass). Ejection fraction closely correlated with infarct size independently of treatment (r2 = 0.63, p<0.0001), but did not
correlate with myocardial creatine or TAN levels.
Conclusion: Elevating myocardial ribose and creatine levels failed to maintain TAN pool or improve post-infarction LV
remodeling and function. This suggests that ribose is not rate-limiting for purine nucleotide biosynthesis in the chronically
failing mouse heart and that alternative strategies to preserve TAN pool should be investigated
Effects of oral creatine supplementation on high intensity, intermittent exercise performance in competitive squash players
The purpose of this study was to determine the effects of oral creatine supplementation on high intensity, intermittent exercise performance in competitive squash players. Nine squash players (mean ± SEM V˙O2max = 61.9 ± 2.1ml · kg-1 · min-1; body mass = 73 ± 3 kg) performed an on-court “ghosting” routine that involved 10 sets of 2 repetitions of simulated positional play, each set interspersed with 30 s passive recovery. A double blind, crossover design was utilised whereby experimental and control groups supplemented 4 times daily for 5 d with 0.075 g · kg-1 body mass of creatine monohydrate and maltodextrine, respectively, and a 4 wk washout period separated the crossover of treatments. The experimental group improved mean set sprint time by 3.2 ± 0.8 % over and above the changes noted for the control group (P = 0.004 and 95 % Cl = 1.4 to 5.1 %). Sets 2 to 10 were completed in a significantly shorter time following creatine supplementation compared to the placebo condition (P < 0.05). In conclusion, these data support existing evidence that creatine supplementation improves high intensity, intermittent exercise performance. In addition, the present study provides new evidence that oral creatine supplementation improves exercise performance in competitive squash players
On the role of the oxidation in the methylation of guanidoacetic acid
There are two, at least, methyl transfer reactions promoted by liver slices in vitro (2). The fundamental distinction between them is that one is dependent on oxygen and the other is not
Effects of creatine monohydrate supplementation on simulated soccer performance
Purpose: To determine the effects of acute short-term creatine (Cr) supplementation on physical performance during a 90-min soccer-specific performance test. Methods: A double-blind, placebo-controlled experimental design was adopted during which 16 male amateur soccer players were required to consume 20 g/d Cr for 7 d or a placebo. A Ball-Sport Endurance and Speed Test (BEAST) comprising measures of aerobic (circuit time), speed (12- and 20-m sprint), and explosive-power (vertical jump) abilities performed over 90 min was performed presupplementation and postsupplementation. Results: Performance measures during the BEAST deteriorated during the second half relative to the first for both Cr (1.2–2.3%) and placebo (1.0–2.2%) groups, indicating a fatigue effect associated with the BEAST. However, no significant differences existed between groups, suggesting that Cr had no performance-enhancing effect or ability to offset fatigue. When effect sizes were considered, some measures (12-m sprint, –0.53 ± 0.69; 20-m sprint, –0.39 ± 0.59) showed a negative tendency, indicating chances of harm were greater than chances of benefit. Conclusions: Acute short-term Cr supplementation has no beneficial effect on physical measures obtained during a 90-min soccer-simulation test, thus bringing into question its potential as an effective ergogenic aid for soccer players
Detection of Metabolites by Proton Ex Vivo NMR, in Vivo MR Spectroscopy Peaks and Tissue Content Analysis: Biochemical-Magnetic Resonance Correlation: Preliminary Results
*Aim*: Metabolite concentrations by in vivo magnetic resonance spectroscopy and ex vivo NMR spectroscopy were compared with excised normal human tissue relaxation times and tissue homogenate contents.

*Hypothesis*: Biochemical analysis combined with NMR and MR spectroscopy defines better tissue analysis.

*Materials and Methods*: Metabolites were measured using peak area, amplitude and molecular weights of metabolites in the reference solutions. In normal brain and heart autopsy, muscle and liver biopsy tissue ex vivo NMR peaks and spin-lattice (T1) and spin-spin (T2) relaxation times, were compared with diseased tissue NMR data in meningioma brain, myocardial infarct heart, duchene-muscular-dystrophy muscle and diffused-liver-injury liver after respective in vivo proton MR spectroscopy was done. NMR data was compared with tissue homogenate contents and serum levels of biochemical parameters.

*Results*: The quantitation of smaller NMR visible metabolites was feasible for both ex vivo NMR and in vivo MR spectroscopy. Ex vivo H-1 NMR and in vivo MRS metabolite characteristic peaks (disease/normal data represented as fold change), T1 and T2, and metabolites in tissue homogenate and serum indicated muscle fibrosis in DMD, cardiac energy depletion in MI heart, neuronal dysfunction in meningioma brain and carbohydrate-lipid metabolic crisis in DLI liver tissues.

*Conclusion*: This preliminary report highlights the biochemical-magnetic resonance correlation as basis of magnetic resonance spectroscopic imaging data interpretation of disease
Creatine and glycerol hyperhydration in trained subjects prior to exercise in the heat.
The authors examined the effects of combined creatine (Cr) and glycerol (Gly) supplementation on responses to exercise in the heat. Subjects (N = 24) were matched for body mass and assigned to either a Cr or placebo (Pl) group. Twice daily during two 7-d supplementation regimens, the Cr group received 11.4 g of Cr·H2O and the Pl group received 11.4 g of glucose. Subjects in both groups also ingested 1 g of Gly/kg body mass (twice daily) in either the first or the second supplementation regimen. This design allowed 4 possible combinations of supplements to be examined (Pl/Pl, Pl/Gly, Cr/Pl, and Cr/Gly). Exercise trials were conducted pre- and postsupplementation at 30 °C and 70% relative humidity. In the Pl group, total body water (TBW) increased by 0.50 ± 0.28 L after Gly and in the Cr group by 0.63 ± 0.33 L after Pl and by 0.87 ± 0.21 L after Gly. Both Cr/Pl and Cr/Gly resulted in significantly attenuated heart rate, rectal temperature, and perceived effort during exercise, although no regimen had any effect on performance. The addition of Gly to Cr significantly increased TBW more than Cr alone (P = 0.02) but did not further enhance the attenuation in HR, Tre, and RPE during exercise. These data suggest that combined Cr and Gly is an effective method of hyperhydration capable of reducing thermal and cardiovascular strain
- …
