1,506 research outputs found
CpG-A and B oligodeoxynucleotides enhance the efficacy of antibody therapy by activating different effector cell populations
Immunostimulatory CpG oligodeoxynucleotides (ODNs) can enhance the
therapeutic effect of monoclonal antibodies (mAbs) by enhancing
antibody-dependent cell-mediated cytotoxicity (ADCC). Distinct classes of
CpG ODNs have been found recently to stimulate different effector cell
populations. We used murine cancer models to explore the role of various
effector cell populations in the antitumor activity seen with mAbs
combined with CpG ODNs of the A and B classes. In the 38C13 syngeneic
murine lymphoma model, both CpG A and CpG B enhanced the efficacy of
murine antilymphoma mAb. Depletion of natural killer (NK) cells alone
markedly decreased the efficacy of therapy with mAbs plus CpG A. In
contrast, depletion of both NK cells and granulocytes was required to
decrease the efficacy of mAb plus CpG B. A human (h) Fc gamma receptor I
(FcgammaRI)-expressing transgenic (Tg) mouse model was used to explore the
role of FcgammaRI in therapy with mAb and CpG ODN. CpG B induced
up-regulation of FcgammaRI in hFcgammaRI Tg mice, whereas CpG A did not.
In vitro CpG B also enhanced ADCC of HER-2/neu-expressing tumor cells by
the FcgammaRI-directed bispecific antibody MDX-H210 using
hFcgammaRI-positive effector cells. In a solid tumor model, tumor growth
was inhibited in Tg mice treated with a combination of MDX-H210 and CpG B.
These data suggest that CpG A enhance ADCC largely by activating NK cells.
In contrast, other effector cell populations, including granulocytes,
contribute to the antitumor activity of CpG B and mAbs. FcgammaRI plays an
important role in this activity
Vaccination of stage III/IV melanoma patients with long NY-ESO-1 peptide and CpG-B elicits robust CD8(+) and CD4(+) T-cell responses with multiple specificities including a novel DR7-restricted epitope.
Long synthetic peptides and CpG-containing oligodeoxynucleotides are promising components for cancer vaccines. In this phase I trial, 19 patients received a mean of 8 (range 1-12) monthly vaccines s.c. composed of the long synthetic NY-ESO-179-108 peptide and CpG-B (PF-3512676), emulsified in Montanide ISA-51. In 18/18 evaluable patients, vaccination induced antigen-specific CD8(+) and CD4(+) T-cell and antibody responses, starting early after initiation of immunotherapy and lasting at least one year. The T-cells responded antigen-specifically, with strong secretion of IFNγ and TNFα, irrespective of patients' HLAs. The most immunogenic regions of the vaccine peptide were NY-ESO-189-102 for CD8(+) and NY-ESO-183-99 for CD4(+) T-cells. We discovered a novel and highly immunogenic epitope (HLA-DR7/NY-ESO-187-99); 7/7 HLA-DR7(+) patients generated strong CD4(+) T-cell responses, as detected directly ex vivo with fluorescent multimers. Thus, vaccination with the long synthetic NY-ESO-179-108 peptide combined with the strong immune adjuvant CpG-B induced integrated, robust and functional CD8(+) and CD4(+) T-cell responses in melanoma patients, supporting the further development of this immunotherapeutic approach
Rapid and Continued T-Cell Differentiation into Long-term Effector and Memory Stem Cells in Vaccinated Melanoma Patients.
<b>Purpose:</b> Patients with cancer benefit increasingly from T-cell-based therapies, such as adoptive T-cell transfer, checkpoint blockade, or vaccination. We have previously shown that serial vaccinations with Melan-A <sup>MART-1</sup> <sub>26-35</sub> peptide, CpG-B, and incomplete Freund adjuvant (IFA) generated robust tumor-specific CD8 T-cell responses in patients with melanoma. Here, we describe the detailed kinetics of early- and long-term establishment of T-cell frequency, differentiation (into memory and effector cells), polyfunctionality, and clonotype repertoire induced by vaccination. <b>Experimental Design:</b> Twenty-nine patients with melanoma were treated with multiple monthly subcutaneous vaccinations consisting of CpG-B, and either the native/EAA ( <i>n</i> = 13) or the analogue/ELA ( <i>n</i> = 16) Melan-A <sup>MART-1</sup> <sub>26-35</sub> peptide emulsified in IFA. Phenotypes and functionality of circulating Melan-A-specific CD8 T cells were assessed directly <i>ex vivo</i> by multiparameter flow cytometry, and TCR clonotypes were determined <i>ex vivo</i> by mRNA transcript analyses of individually sorted cells. <b>Results:</b> Our results highlight the determining impact of the initial vaccine injections on the rapid and strong induction of differentiated effector T cells in both patient cohorts. Moreover, long-term polyfunctional effector T-cell responses were associated with expansion of stem cell-like memory T cells over time along vaccination. Dominant TCR clonotypes emerged early and persisted throughout the entire period of observation. Interestingly, one highly dominant clonotype was found shared between memory and effector subsets. <b>Conclusions:</b> Peptide/CpG-B/IFA vaccination induced powerful long-term T-cell responses with robust effector cells and stem cell-like memory cells. These results support the further development of CpG-B-based cancer vaccines, either alone or as specific component of combination therapies. <i>Clin Cancer Res; 23(13); 3285-96. ©2016 AACR</i>
Impact of Equipment Failures and Wind Correlation on Generation Expansion Planning
Generation expansion planning has become a complex problem within a
deregulated electricity market environment due to all the uncertainties
affecting the profitability of a given investment. Current expansion models
usually overlook some of these uncertainties in order to reduce the
computational burden. In this paper, we raise a flag on the importance of both
equipment failures (units and lines) and wind power correlation on generation
expansion decisions. For this purpose, we use a bilevel stochastic optimization
problem, which models the sequential and noncooperative game between the
generating company (GENCO) and the system operator. The upper-level problem
maximizes the GENCO's expected profit, while the lower-level problem simulates
an hourly market-clearing procedure, through which LMPs are determined. The
uncertainty pertaining to failures and wind power correlation are characterized
by a scenario set, and their impact on generation expansion decisions are
quantified and discussed for a 24-bus power system
UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity.
At least two members of the Toll-like receptor (TLR) family, TLR7 and TLR9, can recognize self-RNA and self-DNA, respectively. Despite the structural and functional similarities between these receptors, their contributions to autoimmune diseases such as systemic lupus erythematosus can differ. For example, TLR7 and TLR9 have opposing effects in mouse models of systemic lupus erythematosus-disease is exacerbated in TLR9-deficient mice but attenuated in TLR7-deficient mice1. However, the mechanisms of negative regulation that differentiate between TLR7 and TLR9 are unknown. Here we report a function for the TLR trafficking chaperone UNC93B1 that specifically limits signalling of TLR7, but not TLR9, and prevents TLR7-dependent autoimmunity in mice. Mutations in UNC93B1 that lead to enhanced TLR7 signalling also disrupt binding of UNC93B1 to syntenin-1, which has been implicated in the biogenesis of exosomes2. Both UNC93B1 and TLR7 can be detected in exosomes, suggesting that recruitment of syntenin-1 by UNC93B1 facilitates the sorting of TLR7 into intralumenal vesicles of multivesicular bodies, which terminates signalling. Binding of syntenin-1 requires phosphorylation of UNC93B1 and provides a mechanism for dynamic regulation of TLR7 activation and signalling. Thus, UNC93B1 not only enables the proper trafficking of nucleic acid-sensing TLRs, but also sets the activation threshold of potentially self-reactive TLR7
Exosome-delivered microRNAs promote IFN-α secretion by human plasmacytoid DCs via TLR7
The excessive production of type I IFNs is a hallmark and a main pathogenic mechanism of many autoimmune diseases, including systemic lupus erythematosus (SLE). In these pathologies, the sustained secretion of type I IFNs is dependent on the improper activation of plasmacytoid DCs (pDCs) by self-nucleic acids. However, the nature and origin of pDC-activating self-nucleic acids is still incompletely characterized. Here, we report that exosomes isolated from the plasma of SLE patients can activate the secretion of IFN-α by human blood pDCs in vitro. This activation requires endosomal acidification and is recapitulated by microRNAs isolated from exosomes, suggesting that exosome-delivered microRNAs act as self-ligands of innate single-stranded endosomal RNA sensors. By using synthetic microRNAs, we identified an IFN induction motif that is responsible for the TLR7-dependent activation, maturation, and survival of human pDCs. These findings identify exosome-delivered microRNAs as potentially novel TLR7 endogenous ligands able to induce pDC activation in SLE patients. Therefore, microRNAs may represent novel pathogenic mediators in the onset of autoimmune reactions and potential therapeutic targets in the treatment of type I IFN-mediated diseases
A Toll for lupus
Toll-like receptor (TLR)-9 recognizes CpG motifs in microbial DNA. TLR9 signalling stimulates innate antimicrobial immunity and modulates adaptive immune responses including autoimmunity against chromatin, e.g., in systemic lupus erythematosus (SLE). This review summarizes the available data for a role of TLR9 signalling in lupus and discusses the following questions that arise from these observations: 1) Is CpG-DNA/TLR9 interaction involved in infection-induced disease activity of lupus? 2) What are the risks of CpG motifs in vaccine adjuvants for lupus patients? 3) Is TLR9 signalling involved in the pathogenesis of lupus by recognizing self DNA
SCARB2/LIMP-2 Regulates IFN Production of Plasmacytoid Dendritic Cells by Mediating Endosomal Translocation of TLR9 and Nuclear Translocation of IRF7
Scavenger receptor class B, member 2 (SCARB2) is essential for endosome biogenesis and reorganization and serves as a receptor for both β-glucocerebrosidase and enterovirus 71. However, little is known about its function in innate immune cells. In this study, we show that, among human peripheral blood cells, SCARB2 is most highly expressed in plasmacytoid dendritic cells (pDCs), and its expression is further upregulated by CpG oligodeoxynucleotide stimulation. Knockdown of SCARB2 in pDC cell line GEN2.2 dramatically reduces CpG-induced type I IFN production. Detailed studies reveal that SCARB2 localizes in late endosome/lysosome of pDCs, and knockdown of SCARB2 does not affect CpG oligodeoxynucleotide uptake but results in the retention of TLR9 in the endoplasmic reticulum and an impaired nuclear translocation of IFN regulatory factor 7. The IFN-I production by TLR7 ligand stimulation is also impaired by SCARB2 knockdown. However, SCARB2 is not essential for influenza virus or HSV-induced IFN-I production. These findings suggest that SCARB2 regulates TLR9-dependent IFN-I production of pDCs by mediating endosomal translocation of TLR9 and nuclear translocation of IFN regulatory factor 7.Chinese Academy of Sciences (Grant KJZD-EW-L10-02)Beijing Municipal Commission of Science and Technology (Grant SCW 2014-09
Cooperative Stimulation of Dendritic Cells by Cryptococcus neoformans Mannoproteins and CpG Oligodeoxynucleotides
While mannosylation targets antigens to mannose receptors on dendritic cells (DC), the resultant immune response is suboptimal. We hypothesized that the addition of toll-like receptor (TLR) ligands would enhance the DC response to mannosylated antigens. Cryptococcus neoformans mannoproteins (MP) synergized with CpG-containing oligodeoxynucleotides to stimulate enhanced production of proinflammatory cytokines and chemokines from murine conventional and plasmacytoid DC. Synergistic stimulation required the interaction of mannose residues on MP with the macrophage mannose receptor (MR), CD206. Moreover, synergy with MP was observed with other TLR ligands, including tripalmitoylated lipopeptide (Pam3CSK4), polyinosine-polycytidylic acid (pI:C), and imiquimod. Finally, CpG enhanced MP-specific MHC II-restricted CD4+ T-cell responses by a mechanism dependent upon DC expression of CD206 and TLR9. These data suggest a rationale for vaccination strategies that combine mannosylated antigens with TLR ligands and imply that immune responses to naturally mannosylated antigens on pathogens may be greatly augmented if TLR and MR are cooperatively stimulated.National Institutes of Health (RO1 AI25780, RO1 AI37532, K08 AI 53542
- …
