864,031 research outputs found
The Effect of Partially Exposed Connective Tissue Graft on Root‐Coverage Outcomes: A Systematic Review and Meta‐Analysis
The aim of this systematic review was to compare the root‐coverage outcomes of using a partially exposed connective tissue graft (CTG) technique with a fully covered CTG technique for root coverage. An electronic search up to February 28th, 2017, was performed to identify human clinical studies with data comparing outcomes of root coverage using CTG, with and without a partially exposed graft. Five clinical studies were selected for inclusion in this review. For each study, the gain of keratinized gingiva, reduction of recession depth, number of surgical sites achieving complete root coverage, percentage of root coverage, gain of tissue thickness, and changes of probing depth and clinical attachment level were recorded. Meta‐analysis for the comparison of complete root coverage between the two techniques presented no statistically significant differences. A statistically significant gain of keratinized tissue in favor of the sites with an exposed CTG and a tendency of greater reduction in recession depth were seen at the sites with a fully covered CTG. Based on the results, the use of a partially exposed CTG in root‐coverage procedures could achieve greater gain in keratinized gingiva, while a fully covered CTG might be indicated for procedures aiming to reduce recession depth
The Effect of EDTA in Attachment Gain and Root Coverage
Root surface biomodification using low pH agents such as citric acid and tetracycline has been proposed to enhance root coverage following connective tissue grafting. The authors hypothesized that root conditioning with neutral pH edetic acid would improve vertical recession depth, root surface coverage, pocket depth, and clinical attachment levels. Twenty teeth in 10 patients with Miller class I and II recession were treated with connective tissue grafting. The experimental sites received 24% edetic acid in sterile distilled water applied to the root surface for 2 minutes before grafting. Controls were pretreated with only sterile distilled water. Measurements were evaluated before surgery and 6 months after surgery. Analysis of variance was used to determine differences between experimental and control groups. We found significant postoperative improvements in vertical recession depth, root surface coverage, and clinical attachment levels in test and control groups, compared to postoperative data. Pocket depth differences were not significant (P\u3c.01)
Legislative and Administrative Processes. By Hans A. Linde and George Bunn; Introduction to the American Public Law System: Cases and Materials. By Jerry L. Mashaw and Richard A. Merrill
Background: Genome and transcriptome sequencing applications that rely on variation in sequence depth can be negatively affected if there are systematic biases in coverage. We have investigated patterns of local variation in sequencing coverage by utilising ultra-deep sequencing (>100,000X) of mtDNA obtained during sequencing of two vertebrate genomes, wolverine (Gulo gulo) and collared flycatcher (Ficedula albicollis). With such extreme depth, stochastic variation in coverage should be negligible, which allows us to provide a very detailed, fine-scale picture of sequence dependent coverage variation and sequencing error rates. Results: Sequencing coverage showed up to six-fold variation across the complete mtDNA and this variation was highly repeatable in sequencing of multiple individuals of the same species. Moreover, coverage in orthologous regions was correlated between the two species and was negatively correlated with GC content. We also found a negative correlation between the site-specific sequencing error rate and coverage, with certain sequence motifs "CCNGCC" being particularly prone to high rates of error and low coverage. Conclusions: Our results demonstrate that inherent sequence characteristics govern variation in coverage and suggest that some of this variation, like GC content, should be controlled for in, for example, RNA-Seq and detection of copy number variation
Sowing the Seeds: A Study of Media Coverage of Agriculture and Women in the Agricultural Sector in Three African Countries: Mali, Uganda and Zambia
Examines the state of news coverage of women and agriculture in sub-Saharan Africa as a baseline for a training program to expand in-depth coverage of women and farmers. Discusses challenges and next steps
Standardization of sequencing coverage depth in NGS: Recommendation for detection of clonal and subclonal mutations in cancer diagnostics
The insufficient standardization of diagnostic next-generation sequencing (NGS) still limits its implementation in clinical practice, with the correct detection of mutations at low variant allele frequencies (VAF) facing particular challenges. We address here the standardization of sequencing coverage depth in order to minimize the probability of false positive and false negative results, the latter being underestimated in clinical NGS. There is currently no consensus on the minimum coverage depth, and so each laboratory has to set its own parameters. To assist laboratories with the determination of the minimum coverage parameters, we provide here a user-friendly coverage calculator. Using the sequencing error only, we recommend a minimum depth of coverage of 1,650 together with a threshold of at least 30 mutated reads for a targeted NGS mutation analysis of >= 3% VAF, based on the binomial probability distribution. Moreover, our calculator also allows adding assay-specific errors occurring during DNA processing and library preparation, thus calculating with an overall error of a specific NGS assay. The estimation of correct coverage depth is recommended as a starting point when assessing thresholds of NGS assay. Our study also points to the need for guidance regarding the minimum technical requirements, which based on our experience should include the limit of detection (LOD), overall NGS assay error, input, source and quality of DNA, coverage depth, number of variant supporting reads, and total number of target reads covering variant region. Further studies are needed to define the minimum technical requirements and its reporting in diagnostic NGS.Web of Science9art. no. 85
Adaptive Path Planning for Depth Constrained Bathymetric Mapping with an Autonomous Surface Vessel
This paper describes the design, implementation and testing of a suite of
algorithms to enable depth constrained autonomous bathymetric (underwater
topography) mapping by an Autonomous Surface Vessel (ASV). Given a target depth
and a bounding polygon, the ASV will find and follow the intersection of the
bounding polygon and the depth contour as modeled online with a Gaussian
Process (GP). This intersection, once mapped, will then be used as a boundary
within which a path will be planned for coverage to build a map of the
Bathymetry. Methods for sequential updates to GP's are described allowing
online fitting, prediction and hyper-parameter optimisation on a small embedded
PC. New algorithms are introduced for the partitioning of convex polygons to
allow efficient path planning for coverage. These algorithms are tested both in
simulation and in the field with a small twin hull differential thrust vessel
built for the task.Comment: 21 pages, 9 Figures, 1 Table. Submitted to The Journal of Field
Robotic
Clinical exome performance for reporting secondary genetic findings.
BACKGROUND
:
Reporting clinically actionable incidental
genetic findings in the course of clinical exome testing is
recommended by the American College of Medical Genet-
ics and Genomics (ACMG). However, the performance of
clinical exome methods for reporting small subsets of genes
has not been previously reported.
METHODS
:
In this study, 57 exome data sets performed as
clinical (n
!
12) or research (n
!
45) tests were retrospec-
tively analyzed. Exome sequencing data was examined for
adequacy in the detection of potentially pathogenic variant
locations in the 56 genes described in the ACMG incidental
findings recommendation. All exons of the 56 genes were
examined for adequacy of sequencing coverage. In addition,
nucleotide positions annotated in HGMD (Human Gene
Mutation Database) were examined.
RESULTS
:
The 56 ACMG genes have 18336 nucleotide
variants annotated in HGMD. None of the 57 exome
data sets possessed a HGMD variant. The clinical exome
test had inadequate coverage for
"
50% of HGMD vari-
ant locations in 7 genes. Six exons from 6 different genes
had consistent failure across all 3 test methods; these
exons had high GC content (76%–84%).
CONCLUSIONS
:
The use of clinical exome sequencing
for the interpretation and reporting of subsets of genes
requires recognition of the substantial possibility of
inadequate depth and breadth of sequencing coverage
at clinically relevant locations. Inadequate depth of
coverage may contribute to false-negative clinical ex-
ome results
Running on Empty: Nutritional Access for Children in Cook County, Illinois
In an effort to make informed program expansion and improvement decisions, the Greater Chicago Food Depository commissioned the Social IMPACT Research Center of Heartland Alliance to conduct a study of child nutrition program coverage and child nutrition and hunger in Cook County, Illinois.This study examined the geographic coverage of child nutrition programs to identify areas that have the greatest number of unserved children and have the worst program coverage. The study also took an in-depth look at the nutritional lives of children attending summer nutrition programs. Insights in these two areas are vital to helping organizations like the Greater Chicago Food Depository make sound programmatic and expansion decisions that will best meet the nutritional and hunger needs of Cook County's most vulnerable children
The Progress, Challenges, and Perspectives of Directed Greybox Fuzzing
Most greybox fuzzing tools are coverage-guided as code coverage is strongly
correlated with bug coverage. However, since most covered codes may not contain
bugs, blindly extending code coverage is less efficient, especially for corner
cases. Unlike coverage-guided greybox fuzzers who extend code coverage in an
undirected manner, a directed greybox fuzzer spends most of its time allocation
on reaching specific targets (e.g., the bug-prone zone) without wasting
resources stressing unrelated parts. Thus, directed greybox fuzzing (DGF) is
particularly suitable for scenarios such as patch testing, bug reproduction,
and specialist bug hunting. This paper studies DGF from a broader view, which
takes into account not only the location-directed type that targets specific
code parts, but also the behaviour-directed type that aims to expose abnormal
program behaviours. Herein, the first in-depth study of DGF is made based on
the investigation of 32 state-of-the-art fuzzers (78% were published after
2019) that are closely related to DGF. A thorough assessment of the collected
tools is conducted so as to systemise recent progress in this field. Finally,
it summarises the challenges and provides perspectives for future research.Comment: 16 pages, 4 figure
- …
