160,443 research outputs found

    Cosmological Parameter Estimation: Method

    Get PDF
    CMB anisotropy data could put powerful constraints on theories of the evolution of our Universe. Using the observations of the large number of CMB experiments, many studies have put constraints on cosmological parameters assuming different frameworks. Assuming for example inflationary paradigm, one can compute the confidence intervals on the different components of the energy densities, or the age of the Universe, inferred by the current set of CMB observations. The aim of this note is to present some of the available methods to derive the cosmological parameters with their confidence intervals from the CMB data, as well as some practical issues to investigate large number of parameters

    Efficient Cosmological Parameter Estimation from Microwave Background Anisotropies

    Full text link
    We revisit the issue of cosmological parameter estimation in light of current and upcoming high-precision measurements of the cosmic microwave background power spectrum. Physical quantities which determine the power spectrum are reviewed, and their connection to familiar cosmological parameters is explicated. We present a set of physical parameters, analytic functions of the usual cosmological parameters, upon which the microwave background power spectrum depends linearly (or with some other simple dependence) over a wide range of parameter values. With such a set of parameters, microwave background power spectra can be estimated with high accuracy and negligible computational effort, vastly increasing the efficiency of cosmological parameter error determination. The techniques presented here allow calculation of microwave background power spectra 10510^5 times faster than comparably accurate direct codes (after precomputing a handful of power spectra). We discuss various issues of parameter estimation, including parameter degeneracies, numerical precision, mapping between physical and cosmological parameters, and systematic errors, and illustrate these considerations with an idealized model of the MAP experiment.Comment: 22 pages, 12 figure

    Thick Domain Walls in AdS Black Hole Spacetimes

    Get PDF
    Equations of motion for a real self-gravitating scalar field in the background of a black hole with negative cosmological constant were solved numerically. We obtain a sequence of static axisymmetric solutions representing thick domain wall cosmological black hole systems, depending on the mass of black hole, cosmological parameter and the parameter binding black hole mass with the width of the domain wall. For the case of extremal cosmological black hole the expulsion of scalar field from the black hole strongly depends on it.Comment: 20 pages, 19 figures, accepted for publication in Phys. Rev.

    Testing cosmological models and understanding cosmological parameter determinations with metaparameters

    Full text link
    Cosmological parameters affect observables in physically distinct ways. For example, the baryon density, omega_b, affects the ionization history and also the pressure of the pre-recombination fluid. To investigate the relative importance of different physical effects to the determination of omega_b, and to test the cosmological model, we artificially split omega_b into two `metaparameters': omega_{be} which controls the ionization history and omega_{bp} which plays the role of omega_b for everything else. In our demonstration of the technique we find omega_b = .0229 +/- .0012 (with no parameter splitting), omega_{bp} = .0238 +/- .0021, omega_{be}= .0150 +/- .0034 and omega_{bp}-omega_{be} = .0088 +/- .0039.Comment: 5 pages, submitted to Ap

    Bounding the Hubble flow in terms of the w parameter

    Full text link
    The last decade has seen increasing efforts to circumscribe and bound the cosmological Hubble flow in terms of model-independent constraints on the cosmological fluid - such as, for instance, the classical energy conditions of general relativity. Quite a bit can certainly be said in this regard, but much more refined bounds can be obtained by placing more precise constraints (either theoretical or observational) on the cosmological fluid. In particular, the use of the w-parameter (w=p/rho) has become increasingly common as a surrogate for trying to say something about the cosmological equation of state. Herein we explore the extent to which a constraint on the w-parameter leads to useful and nontrivial constraints on the Hubble flow, in terms of constraints on density rho(z), Hubble parameter H(z), density parameter Omega(z), cosmological distances d(z), and lookback time T(z). In contrast to other partial results in the literature, we carry out the computations for arbitrary values of the space curvature k in [-1,0,+1], equivalently for arbitrary Omega_0 <= 1.Comment: 15 page

    LRS Bianchi type-I cosmological model with constant deceleration parameter in f(R,T)f(R,T) gravity

    Full text link
    A spatially homogeneous anisotropic LRS Bianchi type-I cosmological model is studied in f(R,T)f(R,T) gravity with a special form of Hubble's parameter, which leads to constant deceleration parameter. The parameters involved in the considered form of Hubble parameter can be tuned to match, our models with the Λ\Lambda CDM model. With the present observed value of the deceleration parameter, we have discussed physical and kinematical properties of a specific model. Moreover, we have discussed the cosmological distances for our model.Comment: Published versio

    Darboux class of cosmological fluids with time-dependent adiabatic indices

    Full text link
    A one-parameter family of time dependent adiabatic indices is introduced for any given type of cosmological fluid of constant adiabatic index by a mathematical method belonging to the class of Darboux transformations. The procedure works for zero cosmological constant at the price of introducing a new constant parameter related to the time dependence of the adiabatic index. These fluids can be the real cosmological fluids that are encountered at cosmological scales and they could be used as a simple and efficient explanation for the recent experimental findings regarding the present day accelerating universe. In addition, new types of cosmological scale factors, corresponding to these fluids, are presentedComment: document with the following three latex files: 1) quhm.tex: 17 pages, 10 figs, 16 numbered refs, Honorable Mention GRF 2000, 2) errad.tex: Errata and Addenda (EaA) of 5 pages with 2 figs enclosed, 3) analogy.tex: Negative friction of Darboux cosmological fluids of 4 page

    Cosmological models with linearly varying deceleration parameter

    Full text link
    We propose a new law for the deceleration parameter that varies linearly with time and covers Berman's law where it is constant. Our law not only allows one to generalize many exact solutions that were obtained assuming constant deceleration parameter, but also gives a better fit with data (from SNIa, BAO and CMB), particularly concerning the late time behavior of the universe. According to our law only the spatially closed and flat universes are allowed; in both cases the cosmological fluid we obtain exhibits quintom like behavior and the universe ends with a big-rip. This is a result consistent with recent cosmological observations.Comment: 12 pages, 7 figures; some typo corrections; to appear in International Journal of Theoretical Physic
    corecore