1,266,190 research outputs found

    Corrections

    Get PDF
    List of corrections to the Fall 1991 issue of Performance Practice Review

    Corrections

    Get PDF
    A correction to the Fall 1991 issue of PPR

    Disrupting the one-loop renormalization group invariant M/alpha in supersymmetry

    Full text link
    It is well known that in low energy supersymmetry the ratio of the gaugino mass to the gauge coupling squared, M/alpha, is renormalization group invariant to one-loop. We present a systematic analysis of the corrections to this ratio, including standard two-loop corrections from gauge and Yukawa couplings, corrections due to an additional U(1)' gaugino, threshold corrections, superoblique corrections, corrections due to extra matter, GUT and Planck scale corrections, and ``corrections'' from messenger sectors with supersymmetry breaking communicated via gauge-mediation. We show that many of these effects induce corrections at the level of a few to tens of percent, but some could give much larger corrections, drastically disrupting the renormalization group extrapolation of the ratio to higher scales. Our analysis is essentially model-independent, and therefore can be used to determine the ambiguities in extrapolating the ratio in any given model between the weak scale and higher scales.Comment: 43 pages, LaTeX, uses epsf.sty, axodraw.sty, 12 eps figures. Minor typos corrected. To appear in Nucl. Phys.

    Electroweak Corrections

    Full text link
    The test of the electroweak corrections has played a major role in providing evidence for the gauge and the Higgs sectors of the Standard Model. At the same time the consideration of the electroweak corrections has given significant indirect information on the masses of the top and the Higgs boson before their discoveries and important orientation/constraints on the searches for new physics, still highly valuable in the present situation.The progression of these contributions is reviewed.Comment: 14 pages, 3 figures, a contribution to "The Standard Theory up to the Higgs discovery - 60 years of CERN

    Subleading contributions from instanton corrections in N = 2 supersymmetric black hole entropy

    Get PDF
    We present subleading corrections to the N=2 supersymmetric black hole entropy. These subleading contributions correspond to instanton corrections of the Type II string theory. In particular we consider an axion free black hole solution of low-energy effective Type II string theory. We present a procedure to include successively all instanton corrections. Expanding these corrections at particular points in moduli space yields polynomial and logarithmic instanton corrections to the classical black hole entropy. We comment on a microscopic interpretation of these instanton corrections and find that the logarithmic corrections correspond to subleading terms in the degeneracy of the spectrum of an underlying quantum theory.Comment: 8 pages, Late

    ZFITTER: a semi-analytical program for fermion pair production in e+e- annihilation, from version 6.21 to version 6.42

    Full text link
    ZFITTER is a Fortran program for the calculation of fermion pair production and radiative corrections at high energy e+e- colliders; it is also suitable for other applications where electroweak radiative corrections appear. ZFITTER is based on a semi-analytical approach to the calculation of radiative corrections in the Standard Model. We present a summary of new features of the ZFITTER program version 6.42 compared to version 6.21. The most important additions are: (i) some higher-order QED corrections to fermion pair production, (ii) electroweak one-loop corrections to atomic parity violation, (iii) electroweak one-loop corrections to nu-e nu-e-bar production, (iv) electroweak two-loop corrections to the W boson mass and the effective weak mixing angle.Comment: 60 pages, latex, 3 table

    Full one-loop QCD and electroweak corrections to sfermion pair production in γγ\gamma \gamma collisions

    Full text link
    We have calculated the full one-loop electroweak (EW) and QCD corrections to the third generation scalar-fermion pair production processes e+eγγfi~fi~ˉ(f=t,b,τ)e^+e^- \to \gamma \gamma \to \tilde{f_i}\bar{\tilde{f_i}} (f=t,b,\tau) at an electron-positron linear collider(LC) in the minimal supersymmetric standard model (MSSM). We analyze the dependence of the radiative corrections on the parameters such as the colliding energy s^\sqrt{\hat s} and the SUSY fundamental parameters AfA_f, tanβ\tan \beta, μ\mu, MSUSYM_{SUSY} and so forth. The numerical results show that the EW corrections to the squark-, stau-pair production processes and QCD corrections to the squark-pair production processes give substantial contributions in some parameter space. The EW relative corrections to squark-pair production processes can be comparable with QCD corrections at high energies. Therefore, these EW and QCD corrections cannot be neglected in precise measurement of sfermion pair productions via γγ\gamma\gamma collision at future linear colliders.Comment: to be appeared in Phys. Rev.

    Stringy Corrections to Kaluza-Klein Black Holes

    Get PDF
    We consider string theory corrections to 4D black holes which solve the 5D vacuum Einstein equations. We find that the corrections vanish only for the extremal electric solution. We also show that for the non-extremal electric black hole the mass corrections are related to the charge corrections. The implications to string states counting and the correspondence principle for black holes and strings are discussed.Comment: 20 pages, version to appear in NP

    Updating quasar bolometric luminosity corrections. II. Infrared bolometric corrections

    Full text link
    We present infrared bolometric luminosity corrections derived from the detailed spectral energy distributions of 62 bright quasars of low- to moderate-redshift (z=0.03-1.4). At 1.5, 2, 3, 7, 12, 15, and 24 microns we provide bolometric corrections of the mathematical forms L_iso=\zeta \lambda L_\lambda and log(L_iso)=A+B log(\lambda L_\lambda). Bolometric corrections for radio-loud and radio-quiet objects are consistent within 95% confidence intervals, so we do not separate them. Bolometric luminosities estimated using these corrections are typically smaller than those derived from some commonly used in the literature. We investigate the possibility of a luminosity dependent bolometric correction and find that, while the data are consistent with such a correction, the dispersion is too large and the luminosity range too small to warrant such a detailed interpretation. Bolometric corrections at 1.5 μ\mum are appropriate for objects with properties that fall in the range log(L_bol)=45.4-47.3 and bolometric corrections at all other wavelengths are appropriate for objects with properties that fall in the range log(L_bol)=45.1-47.0.Comment: 13 pages, 4 tables, 8 figures, accepted to MNRA
    corecore