45,812 research outputs found
Kinetics and thermodynamics of first-order Markov chain copolymerization
We report a theoretical study of stochastic processes modeling the growth of
first-order Markov copolymers, as well as the reversed reaction of
depolymerization. These processes are ruled by kinetic equations describing
both the attachment and detachment of monomers. Exact solutions are obtained
for these kinetic equations in the steady regimes of multicomponent
copolymerization and depolymerization. Thermodynamic equilibrium is identified
as the state at which the growth velocity is vanishing on average and where
detailed balance is satisfied. Away from equilibrium, the analytical expression
of the thermodynamic entropy production is deduced in terms of the Shannon
disorder per monomer in the copolymer sequence. The Mayo-Lewis equation is
recovered in the fully irreversible growth regime. The theory also applies to
Bernoullian chains in the case where the attachment and detachment rates only
depend on the reacting monomer
Investigations on vinylene carbonate, 2. Copolymerization with N-vinyl-2-pyrrolidone and ethyl vinyl ether
Functional monomers and polymers have received considerable attention in recent years, especially in the biomedical field. In this respect, poly(viny1ene carbonate) is very interesting, because the reactive carbonate groups offer the possibility of coupling with bioactive compounds containing amino groups, e. g. proteins or enzymes. Copolymerization of vinylene carbonate with other vinyl monomers will affect the amount of carbonate groups as well as other properties of the copolymers. In a previous paper we described the preparation and properties of poly(viny1ene carbonate) I), and this paper reports the copolymerization of vinylene carbonate with N-vinyl-2-pyrrolidone and with ethyl vinyl ether
Tuning the critical solution temperature of polymers by copolymerization
We study statistical copolymerization effects on the upper critical solution
temperature (CST) of generic homopolymers by means of coarse-grained Langevin
dynamics computer simulations and mean-field theory. Our systematic
investigation reveals that the CST can change monotonically or
non-monotonically with copolymerization, as observed in experimental studies,
depending on the degree of non-additivity of the monomer (A-B)
cross-interactions. The simulation findings are confirmed and qualitatively
explained by a combination of a two-component Flory-de Gennes model for polymer
collapse and a simple thermodynamic expansion approach. Our findings provide
some rationale behind the effects of copolymerization and may be helpful for
tuning CST behavior of polymers in soft material design.Comment: 8 pages, 6 figure
Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates
Controlled routes to prepare polyesters and polycarbonates are of interest due to the widespread application of these materials and the opportunities provided to prepare new copolymers. Furthermore, ring-opening copolymerization may enable new poly(ester–carbonate) materials to be prepared which are inaccessible using alternative polymerizations. This review highlights recent advances in the ring-opening copolymerization catalysis, using epoxides coupled with anhydrides or CO2, to produce polyesters and polycarbonates. In particular, the structures and performances of various homogeneous catalysts are presented for the epoxide–anhydride copolymerization. The properties of the resultant polyesters and polycarbonates are presented and future opportunities highlighted for developments of both the materials and catalysts
Synthesis of biodegradable polyesteramides with pendant functional groups
Morpholine-2,5-dione derivatives having substituents with benzyl-protected carboxylic acid, benzyloxycarbonyl-protected amine and p-methoxy-protected thiol groups, respectively, were prepared in 29-58% yield by cyclization of the corresponding N-[(2RS)-bromopropionyl]-L-amino acids. Polyesteramides with protected pendant functional groups were obtained by ring-opening copolymerization of either ε-caprolactone or DL-lactide with morpholine-2,5-dione derivatives having protected functional substituents. The copolymerizations were carried out in the bulk at 130°C using stannous octoate as an initiator and using low mole fractions (0,05, 0,10 and 0,20) of morpholine-2,5-dione derivatives in the feed. The molecular weight of the resulting copolymers ranged from 1,4 to 8,3 · 104. The ring-opening homopolymerization of morpho-line-2,5-dione derivatives with protected functional substituents was not successful. Polyesteramides with either pendant carboxylic acid groups or pendant amine groups were prepared by catalytic hydrogenation of the corresponding protected copolymers. Treatment of copolymers having pendant p-methoxybenzyl-protected thiol groups with trifluoromethanesulfonic acid resulted not only in the removal of the p-methoxybenzyl group but also in severe degradation of the copolymers, due to acidolysis of main-chain ester bonds
TGA/FTIR: An Extremely Useful Technique for Studying Polymer Degradation
Thermogravimetric analysis coupled to Fourier transform infrared spectroscopy, TGA/FTIR, has been used to probe the degradation of several polymeric systems. These include poly(methyl methacrylate) in the presence of various additives, graft copolymers of acrylonitrile-butadiene-styrene and styrene-butadiene with sodium methacrylate and styrene with acrylonitrile, blends of styrene-butadiene block copolymers with poly(vinylphosphonic acid) and poly(vinylsulfonic acid), and cross-linked polystyrenes. Additives may interact with poly(methyl methacrylate) by coordination to the carbonyl oxygen to a Lewis acid and the subsequent transfer of an electron from the polymer chain to the metal atom or by the formation of a radical which can trap the degrading radicals before they can undergo further degradation. When an inorganic char-former is graft copolymerized onto a polymer, there is a good correlation between TGA behavior in an inert atmosphere and thermal stability in air, but this is not true when the char is largely carbonific
Melt block copolymerization of ε-caprolactone and L-lactide
AB block copolymers of ε-caprolactone and (L)-lactide could be prepared by ring-opening polymerization in the melt at 110°C using stannous octoate as a catalyst and ethanol as an initiator provided ε-caprolactone was polymerized first. Ethanol initiated the polymerization of ε-caprolactone producing a polymer with ε-caprolactone derived hydroxyl end groups which after addition of L-lactide in the second step of the polymerization initiated the ring-opening copolymerization of L-lactide. The number-average molecular weights of the poly(ε-caprolactone) blocks varied from 1.5 to 5.2 × 103, while those of the poly(L-lactide) blocks ranged from 17.4 to 49.7 × 103. The polydispersities of the block copolymers varied from 1.16 to 1.27. The number-average molecular weights of the polymers were controlled by the monomer/hydroxyl group ratio, and were independent on the monomer/stannous octoate ratio within the range of experimental conditions studied. When L-lactide was polymerized first, followed by copolymerization of ε-caprolactone, random copolymers were obtained. The formation of random copolymers was attributed to the occurrence of transesterification reactions. These side reactions were caused by the ε-caprolactone derived hydroxyl end groups generated during the copolymerization of ε-caprolactone with pre-polymers of L-lactide. The polymerization proceeds through an ester alcoholysis reaction mechanism, in which the stannous octoate activated ester groups of the monomers react with hydroxyl groups
Self-Organization at the Nanoscale Scale in Far-From-Equilibrium Surface Reactions and Copolymerizations
An overview is given of theoretical progress on self-organization at the
nanoscale in reactive systems of heterogeneous catalysis observed by field
emission microscopy techniques and at the molecular scale in copolymerization
processes. The results are presented in the perspective of recent advances in
nonequilibrium thermodynamics and statistical mechanics, allowing us to
understand how nanosystems driven away from equilibrium can manifest
directionality and dynamical order.Comment: A. S. Mikhailov and G. Ertl, Editors, Proceedings of the
International Conference "Engineering of Chemical Complexity", Berlin Center
for Studies of Complex Chemical Systems, 4-8 July 201
- …
