24,743 research outputs found

    Microphase Separation within a Comb Copolymer with Attractive Side Chains: A Computer Simulation Study

    Get PDF
    Computer simulation modelling of a flexible comb copolymer with attractive interactions between the monomer units of the side chains is performed. The conditions for the coil-globule transition, induced by the increase of attractive interaction, Δ, between side chain monomer units, are analysed for different values of the number of monomer units in the backbone, N, in the side chains, n, and between successive grafting points, m. It is shown that the coil-globule transition of such a copolymer corresponds to a first-order phase transition. The energy of attraction (Δ) required for the realisation of the coil-globule transition decreases with increasing n and decreasing m. The coil-globule transition is accompanied by significant aggregation of side chain units. The resulting globule has a complex structure. In the case of a relatively short backbone (small value of N), the globule consists of a spherical core formed by side chains and an enveloping shell formed by the monomer units of the backbone. In the case of long copolymers (large value of N), the side chains form several spherical micelles while the backbone is wrapped on the surfaces of these micelles and between them.

    Theoretical Study of Comb-Polymers Adsorption on Solid Surfaces

    Full text link
    We propose a theoretical investigation of the physical adsorption of neutral comb-polymers with an adsorbing skeleton and non-adsorbing side-chains on a flat surface. Such polymers are particularly interesting as "dynamic coating" matrices for bio-separations, especially for DNA sequencing, capillary electrophoresis and lab-on-chips. Separation performances are increased by coating the inner surface of the capillaries with neutral polymers. This method allows to screen the surface charges, thus to prevent electro-osmosis flow and adhesion of charged macromolecules (e.g. proteins) on the capillary walls. We identify three adsorption regimes: a "mushroom" regime, in which the coating is formed by strongly adsorbed skeleton loops and the side-chains anchored on the skeleton are in a swollen state, a "brush" regime, characterized by a uniform multi-chains coating with an extended layer of non-adsorbing side-chains and a non-adsorbed regime. By using a combination of mean field and scaling approaches, we explicitly derive asymptotic forms for the monomer concentration profiles, for the adsorption free energy and for the thickness of the adsorbed layer as a function of the skeleton and side-chains sizes and of the adsorption parameters. Moreover, we obtain the scaling laws for the transitions between the different regimes. These predictions can be checked by performing experiments aimed at investigating polymer adsorption, such as Neutron or X-ray Reflectometry, Ellipsometry, Quartz Microbalance, or Surface Force Apparatus.Comment: 30 pages, 7 figures, to be published in Macromolecule

    Efficient Synthesis of Narrowly Dispersed Brush Copolymers and Study of Their Assemblies: The Importance of Side Chain Arrangement

    Get PDF
    Efficient, one-pot preparation of synthetically challenging, high molecular weight (MW), narrowly dispersed brush block copolymers and random copolymers in high conversions was achieved by ring-opening metathesis (co)polymerization (ROMP) of various macromonomers (MMs) using the highly active, fast-initiating ruthenium olefin metathesis catalyst (H_2IMes)(pyr)_2(Cl)_2RuCHPh. A series of random and block copolymers were prepared from a pair of MMs containing polylactide (PLA) and poly(n-butyl acrylate) (PnBA) side chains at similar MWs. Their self-assembly in the melt state was studied by small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM). In brush random copolymers containing approximately equal volume fractions of PLA and PnBA, the side chains segregate into lamellae with domain spacing of 14 nm as measured by SAXS, which was in good agreement with the lamellar thickness measured by AFM. The domain spacings and order−disorder transition temperatures of brush random copolymers were insensitive to the backbone length. In contrast, brush block copolymers containing approximately equal volume fractions of these MMs self-assembled into highly ordered lamellae with domain spacing over 100 nm. Their assemblies suggested that the brush block copolymer backbone adopted an extended conformation in the ordered state

    Crystalline and disordered state of poly(dihexylsilylene) copolymers

    Get PDF
    A systematic comparison of random copolymers, derived from poly(dihexylsilylene) (PDHS) by incorporation of monomeric units with shorter unbranched alkyl side chains, has been carried out based on calorimetry, variable temperature UV spectroscopy, and 29Si MAS (magic angle spinning) solid state NMR investigations. Also, hexylmethylsilylene units and branched monomers have been copolymerized. Up to 10% comonomer with shorter linear side chains (i. e., pentyl to propyl) could be incorporated into PDHS without impeding the all-trans order of the crystalline phase. In this case, the UV absorption maximum of the crystalline low-temperature phase was affected only slightly according to the length and fraction of the comonomer side chains. A less ordered crystal structure (λmax = 345-355 nm) was observed when the content of comonomers with shorter side chains was about 20%. Yet, all these materials form conformationally disordered mesophases. A clear disordering transition and corresponding thermochromism was not observed any more when 50% of propyl side chains were incorporated. The order of the crystalline and the mesophase is also strongly perturbed if only a small fraction (4%) of the side chains are branched at C2

    Ordering at two length scales in comb-coil diblock copolymers consisting of only two different monomers

    Get PDF
    The microphase separated morphology of a melt of a specific class of comb-coil diblock copolymers, consisting of an AB comb block and a linear homopolymer A block, is analyzed in the weak segregation limit. On increasing the length of the homopolymer A block, the systems go through a characteristic series of structural transitions. Starting from the pure comb copolymer the first series of structures involve the short length scale followed by structures involving the large length scale. A maximum of two critical points exists. Furthermore, in the two parameter space, characterizing the comb-coil diblock copolymer molecules considered, a non-trivial bifurcation point exists beyond which the structure factor can have two maxima (two correlation hole peaks).Comment: 22 pages, 12 Postscript figures (revtex

    Zipping and collapse of diblock copolymers

    Full text link
    Using exact enumeration methods and Monte Carlo simulations we study the phase diagram relative to the conformational transitions of a two dimensional diblock copolymer. The polymer is made of two homogeneous strands of monomers of different species which are joined to each other at one end. We find that depending on the values of the energy parameters in the model, there is either a first order collapse from a swollen to a compact phase of spiral type, or a continuous transition to an intermediate zipped phase followed by a first order collapse at lower temperatures. Critical exponents of the zipping transition are computed and their exact values are conjectured on the basis of a mapping onto percolation geometry, thanks to recent results on path-crossing probabilities.Comment: 12 pages, RevTeX and 14 PostScript figures include

    Characterization of the Soluble Nanoparticles Formed through Coulombic Interaction of Bovine Serum Albumin with Anionic Graft Copolymers at Low pH

    Get PDF
    A static light scattering (SLS) study of bovine serum albumin (BSA) mixtures with two anionic graft copolymers of poly (sodium acrylate-co-sodium 2-acrylamido-2-methyl-1-propanesulphonate)-graft-poly (N, N-dimethylacrylamide), with a high composition in poly (N, N-dimethylacrylamide) (PDMAM) side chains, revealed the formation of oppositely charged complexes, at pH lower than 4.9, the isoelectric point of BSA. The core-corona nanoparticles formed at pH = 3.00, were characterized. Their molecular weight and radius of gyration were determined by SLS, while their hydrodynamic radius was determined by dynamic light scattering. Small angle neutron scattering measurements were used to determine the radius of the insoluble complexes, comprising the core of the particles. The values obtained indicated that their size and aggregation number of the nanoparticles, were smaller when the content of the graft copolymers in neutral PDMAM side chains was higher. Such particles should be interesting drug delivery candidates, if the gastrointestinal tract was to be used
    • 

    corecore