624,427 research outputs found
Fractional-order feedback control of a poorly damped system
This study presents the design of a fractional-order proportional-integral (FOPI) controller for a mass-spring-damper system which is poorly damped. A model based design technique is used to design a FOPI controller for this system. A good performance of the closed loop control of a high order oscillatory system, such as the mass-spring-damper system, is with traditional proportional-integral (PI) controllers difficult to achieve. Therefore, a comparison between a traditional PI controller and a FOPI controller is performed by simulation. The simulation results show that the FOPI controller outperforms the classical PI controller resulting in an increased damping of the oscillations while maintaining a reasonable control effort
Data-driven control design for neuroprotheses: a virtual reference feedback tuning (VRFT) approach
This paper deals with design of feedback controllers for knee joint movement of paraplegics using functional electrical stimulation (FES) of the paralyzed quadriceps muscle group. The controller design approach, virtual reference feedback tuning (VRFT), is directly based on open loop measured data and fits the controller in such a way that the closed-loop meets a model reference objective. The use of this strategy, avoiding the modeling step, significantly reduces the time required for controller design and considerably simplifies the rehabilitation protocols. Linear and nonlinear controllers have been designed and experimentally tested, preliminarily on a healthy subject and finally on a paraplegic patient. Linear controller is effective when applied on small range of knee joint angle. The design of a nonlinear controller allows better performances. It is also shown that the control design is effective in tracking assigned knee angle trajectories and rejecting disturbances
Classifying Corruption
Time delays reduces the performance of any controlled system. If neglected in the design phase, the system may even become unstable when using the designed controller. Several power control strategies have been proposed in order to improve the capacity of cellular radio systems, but time delays are usually neglected. Here, it is shown that the problems can be handled by considering the time delays in the design phase in order to choose the appropriate parameter values. Most popular algorithms can be seen as special cases of an integrating controller. This structure is extended first to a proportional integrating (PI)-controller and then further on to a general linear controller of higher orders. Corresponding design procedures are outlined based on techniques, such as pole placement, from the field of automatic control. The PI-controller is a very appealing choice of structure, with better performance compared to an I-controller and less complex than a higher order controller. The benefits are further illuminated by network simulations
Some control design experiments with HIFOO
A new MATLAB package called HIFOO was recently proposed for H-infinity
fixed-order controller design. This document illustrates how some standard
controller design examples can be solved with this software
PID and PID-like controller design by pole assignment within D-stable regions
This paper presents a new PID and PID-like controller design method that permits the designer to control the desired dynamic performance of a closed-loop system by first specifying a set of desired D-stable regions in the complex plane and then running a numerical optimisation algorithm to find the controller parameters such that all the roots of the closed-loop system are within the specified regions. This method can be used for stable and unstable plants with high order degree, for plants with time delay, for controller with more than three design parameters, and for various controller configurations. It also allows a unified treatment of the controller design for both continuous and discrete systems. Examples and comparative simulation results are pro-vided to illustrate its merit
Multi-objective evolutionary–fuzzy augmented flight control for an F16 aircraft
In this article, the multi-objective design of a fuzzy logic augmented flight controller for a high performance fighter jet (the Lockheed-Martin F16) is described. A fuzzy logic controller is designed and its membership functions tuned by genetic algorithms in order to design a roll, pitch, and yaw flight controller with enhanced manoeuverability which still retains safety critical operation when combined with a standard inner-loop stabilizing controller. The controller is assessed in terms of pilot effort and thus reduction of pilot fatigue. The controller is incorporated into a six degree of freedom motion base real-time flight simulator, and flight tested by a qualified pilot instructor
Sequential design of a linear quadratic controller for the Deep Space Network antennas
A new linear quadratic controller design procedure is proposed for the NASA/JPL Deep Space Network antennas. The antenna model is divided into a tracking subsystem and a flexible subsystem. Controllers for the flexible and tracking parts are designed separately by adjusting the performance index weights. Ad hoc weights are chosen for the tracking part of the controller and the weights of the flexible part are adjusted. Next, the gains of the tracking part are determined, followed by the flexible controller final tune-up. In addition, the controller for the flexible part is designed separately for each mode; thus the design procedure consists of weight adjustment for small-size subsystems. Since the controller gains are obtained by adjusting the performance index weights, determination of the weight effect on system performance is a crucial task. A method of determining this effect that allows an on-line improvement of the tracking performance is presented in this article. The procedure is illustrated with the control system design for the Deep Space Station (DSS)-13 antenna
- …
