3,025,089 research outputs found
Robot control with biological cells
At present there exists a large gap in size, performance, adaptability and robustness between natural and artificial information processors for performing coherent perception-action tasks under real-time constraints. Even the simplest organisms have an enviable capability of coping with an unknown dynamic environment. Robots, in contrast, are still clumsy if confronted with such complexity. This paper presents a bio-hybrid architecture developed for exploring an alternate approach to the control of autonomous robots. Circuits prepared from amoeboid plasmodia of the slime mold Physarum polycephalum are interfaced with an omnidirectional hexapod robot. Sensory signals from the macro-physical environment of the robot are transduced to cellular scale and processed using the unique micro-physical features of intracellular information processing. Conversely, the response form the cellular computation is amplified to yield a macroscopic output action in the environment mediated through the robot’s actuators
Zeta potential control for electrophoresis cells
Zeta potential arises from fact that ions tend to be adsorbed on surface of cell walls. This potential interfaces with electric field sensed by migrating particles and degrades resolution of separation. By regulating sign and magnitude of applied potential induced charge can be used to increase or decrease effective wall zeta potential
Traditional Chinese medicine herbal mixture LQ arrests FUCCI-expressing HeLa cells in G₀/G₁ phase in 2D plastic, 2.5D Matrigel, and 3D Gelfoam culture visualized with FUCCI imaging.
We used the fluorescence ubiquitination-based cell cycle indicator (FUCCI) to monitor cell cycle arrest after treatment of FUCCI-expressing HeLa cells (FUCCI-HeLa) with a traditional Chinese medicine (TCM) herbal mixture LQ, previously shown to have anti-tumor and anti-metastatic activity in mouse models. Paclitaxel was used as the positive control. In 2D monolayer culture, the untreated control had approximately 45% of the cells in S/G₂/M phase. In contrast, the LQ-treated cells (9 mg/ml) were mostly in the G₀/G₁ (>90%) after 72 hours. After treatment with paclitaxel (0.01 μm), for 72 hours, 95% of the cells were in S/G₂/M. In 2.5D Matrigel culture, the colonies in the untreated control group had 40% of the cells in S/G₂/M. LQ arrested the cells in G₀/G₁ after 72 hours. Paclitaxel arrested almost all the cells in S/G₂/M after 72 hours. In 3D Gelfoam culture, the untreated control culture had approximately 45% of cells in G₂/M. In contrast, the LQ-treated cells were mostly in G₀/G₁ phase (>80%) after 72 hours treatment. Paclitaxel resulted in 90% of the cells arrested in S/G₂/M after 72 hours. The present report suggests the non-toxic LQ has potential to maintain cancers in a quiescent state for long periods of time
Charge Control Investigation of Rechargeable Lithium Cells
An ambient temperature rechargeable Li-TiS2 cell was cycled under conditions which simulate aerospace applications. A novel charge/discharge state-of-charge control scheme was used, together with tapered current charging, to overcome deleterious effects associated with end-of-charge and end-of-discharge voltages. The study indicates that Li-TiS2 cells hold promise for eventual synchronous satellite-type applications. Problem areas associated with performance degradation and reconditioning effects are identified
Characterization of theThreshold for NAD(P)H:quinone Oxidoreductase Activity in Intact Sulforaphane-treated Pulmonary Arterial Endothelial Cells
Treatment of bovine pulmonary arterial endothelial cells in culture with the phase II enzyme inducer sulforaphane (5 μM, 24 h; sulf-treated) increased cell-lysate NAD(P)H:quinone oxidoreductase (NQO1) activity by 5.7 ± 0.6 (mean ± SEM)-fold, but intact-cell NQO1 activity by only 2.8 ± 0.1-fold compared to control cells. To evaluate the hypothesis that the threshold for sulforaphane-induced intact-cell NQO1 activity reflects a limitation in the capacity to supply NADPH at a sufficient rate to drive all the induced NQO1 to its maximum activity, total KOH-extractable pyridine nucleotides were measured in cells treated with duroquinone to stimulate maximal NQO1 activity. NQO1 activation increased NADP+ in control and sulf-treated cells, with the effect more pronounced in the sulf-treated cells, in which the NADPH was also decreased. Glucose-6-phosphate dehydrogenase (G-6-PDH) inhibition partially blocked NQO1 activity in control and sulf-treated cells, but G-6-PDH overexpression via transient transfection with the human cDNA alleviated neither the restriction on intact sulf-treated cell NQO1 activity nor the impact on the NADPH/NADP+ ratios. Intracellular ATP levels were not affected by NQO1 activation in control or sulf-treated cells. An increased dependence on extracellular glucose and a rightward shift in the Km for extracellular glucose were observed in NQO1-stimulated sulf-treated vs control cells. The data suggest that glucose transport in the sulf-treated cells may be insufficient to support the increased metabolic demand for pentose phosphate pathway-generated NADPH as an explanation for the NQO1 threshold
'Unlicensed' natural killer cells dominate the response to cytomegalovirus infection.
Natural killer (NK) cells expressing inhibitory receptors that bind to self major histocompatibility complex (MHC) class I are 'licensed', or rendered functionally more responsive to stimulation, whereas 'unlicensed' NK cells lacking receptors for self MHC class I are hyporesponsive. Here we show that contrary to the licensing hypothesis, unlicensed NK cells were the main mediators of NK cell-mediated control of mouse cytomegalovirus infection in vivo. Depletion of unlicensed NK cells impaired control of viral titers, but depletion of licensed NK cells did not. The transfer of unlicensed NK cells was more protective than was the transfer of licensed NK cells. Signaling by the tyrosine phosphatase SHP-1 limited the proliferation of licensed NK cells but not that of unlicensed NK cells during infection. Thus, unlicensed NK cells are critical for protection against viral infection
Early Investigations and Recent Advances in Intraperitoneal Immunotherapy for Peritoneal Metastasis.
Peritoneal metastasis (PM) is an advanced stage malignancy largely refractory to modern therapy. Intraperitoneal (IP) immunotherapy offers a novel approach for the control of regional disease of the peritoneal cavity by breaking immune tolerance. These strategies include heightening T-cell response and vaccine induction of anti-cancer memory against tumor-associated antigens. Early investigations with chimeric antigen receptor T cells (CAR-T cells), vaccine-based therapies, dendritic cells (DCs) in combination with pro-inflammatory cytokines and natural killer cells (NKs), adoptive cell transfer, and immune checkpoint inhibitors represent significant advances in the treatment of PM. IP delivery of CAR-T cells has shown demonstrable suppression of tumors expressing carcinoembryonic antigen. This response was enhanced when IP injected CAR-T cells were combined with anti-PD-L1 or anti-Gr1. Similarly, CAR-T cells against folate receptor α expressing tumors improved T-cell tumor localization and survival when combined with CD137 co-stimulatory signaling. Moreover, IP immunotherapy with catumaxomab, a trifunctional antibody approved in Europe, targets epithelial cell adhesion molecule (EpCAM) and has shown considerable promise with control of malignant ascites. Herein, we discuss immunologic approaches under investigation for treatment of PM
Altered distribution of mucosal NK cells during HIV infection.
The human gut mucosa is a major site of human immunodeficiency virus (HIV) infection and infection-associated pathogenesis. Increasing evidence shows that natural killer (NK) cells have an important role in control of HIV infection, but the mechanism(s) by which they mediate antiviral activity in the gut is unclear. Here, we show that two distinct subsets of NK cells exist in the gut, one localized to intraepithelial spaces (intraepithelial lymphocytes, IELs) and the other to the lamina propria (LP). The frequency of both subsets of NK cells was reduced in chronic infection, whereas IEL NK cells remained stable in spontaneous controllers with protective killer immunoglobulin-like receptor/human leukocyte antigen genotypes. Both IEL and LP NK cells were significantly expanded in immunological non-responsive patients, who incompletely recovered CD4+ T cells on highly active antiretroviral therapy (HAART). These data suggest that both IEL and LP NK cells may expand in the gut in an effort to compensate for compromised CD4+ T-cell recovery, but that only IEL NK cells may be involved in providing durable control of HIV in the gut
Chronic-moderate ethanol exposure of L(tk-) cells expressing ? 4? 3? GABAA receptors reduces potency of allopregnanolone potentiation of GABA-evoked inward currents: Possible role of PKC
Aim: To investigate the effect of chronic-moderate ethanol (CME) treatment upon direct activation and allosteric modulation of GABAA receptors, and to assess the sensitivity of these parameters to PKC inhibition in control and ethanol-treated cells.
Methods: L(tk-) cells were exposed to 20mM ethanol in culture media for 14 days prior to induction of stable expression of human recombinant ?4?3? receptors using dexamethasone. Concentration-response curves for GABA (1nM - 100µM), and allopregnanolone (ALLO; 1nM - 30µM) co-applied with 200nM GABA were obtained using whole-cell patch-clamp electrophysiology at a holding voltage of -60 mV. 400nM calphostin C (CphC) or vehicle (DMSO) was administered to cells via the pipette solution, which was prepared with 2mM Mg.ATP. SDS-PAGE and western blotting were used to compare levels of whole-cell expression, quantified relative to ?-actin, of ?4 and ? GABAA receptor subunits, and several isoforms of PKC (?, ?, ?, and ?), in control and CME-treated cells. Data was reported as Mean ± SEM and significance determined by either one-way ANOVA with Newman-Keuls multiple comparison tests, or two-way, unpaired t-tests.
Results: Expression of ?4 subunits was reduced 35% (P0.05) and pEC50 (control: 6.18±0.04, n=13, CME: 6.17±0.04, n=4, P>0.05) of GABA were unchanged. CphC increased the GABA pEC50 relative to control (6.62±0.08, n=3, P<0.001) but had no effect upon responses at pEC20 GABA. Following CME, the potency of GABA was unaltered in the presence of CphC.
The magnitude of ALLO-induced potentiation in control cells (7.34±0.6 fold, n=19) was unchanged by CME (ATP: 7.39±1.0 fold, n=9, P>0.05), and CphC had no significant effect in control or CME-treated cells.
The ALLO pEC50 in control cells (6.23±0.05, n=19) was unaffected by CphC. Following CME, the potency of ALLO was reduced (5.68±0.06, n=9, P<0.001) but was enhanced in the presence of CphC, which restored potency almost back to control levels (5.94±0.09, n=5, P<0.05 relative to control).
Expression of the ?, ?, ?, and ? isoforms of PKC was detected in whole-cell lysates of L(tk-) cells but only PKC? was significantly altered by CME treatment, exhibiting a nearly 4-fold increase (3.9±0.47 fold P<0.01) when compared with that in controls.
Discussion: CME of un-induced L(tk-) cells was sufficient to alter sensitivity of ?4?3? receptor function to alterations of the balance of phosphorylation induced by CphC. The increased expression of PKC? after CME may have been directly related to the absence of effect of CphC upon GABA potency. As direct interaction of GABAA receptors with PKC? has not been determined, the effects observed for potency and efficacy of ALLO following CME may be indicative of changes to the phosphorylation of accessory proteins or other PKC isoforms by PKC?
- …
