250,943 research outputs found

    Off-Center Mergers of Clusters of Galaxies and Nonequipartition of Electrons and Ions in Intracluster Medium

    Get PDF
    We investigate the dynamical evolution of clusters of galaxies and their observational consequences during off-center mergers, explicitly considering the relaxation process between ions and electrons in intracluster medium by N-body and hydrodynamical simulations. In the contracting phase a bow shock is formed between the two subclusters. The observed temperature between two peaks in this phase depends on the viewing angle even if the geometry of the system seems to be very simple like head-on collisions. Around the most contracting epoch, when we observe merging clusters nearly along the collision axis, they look like spherical relaxed clusters with large temperature gradients. In the expanding phase, spiral bow shocks occur. As in head-on mergers, the electron temperature is significantly lower than the plasma mean one especially in the post-shock regions in the expanding phase. When the systems have relatively large angular momentum, double-peak structures in the X-ray images can survive even after the most contracting epoch. Morphological features in both X-ray images and electron temperature distribution characteristic to off-center mergers are seriously affected by the viewing angle. When the clusters are observed nearly along the collision axis, the distribution of galaxies' line-of-sight (LOS) velocities is a good indicator of mergers. In the contracting phase, an negative kurtosis and a large skewness are expected for nearly equal mass collisions and rather different mass ones, respectively. To obtain statistically significant results, about 1000 galaxies' LOS velocities are required. For nearby clusters (z<0.05z<0.05), large redshift surveys such as 2dF will enable us to study merger dynamics.Comment: 21 pages, 7 figures. Accepted for publication in Ap

    A smooth bouncing cosmology with scale invariant spectrum

    Full text link
    We present a bouncing cosmology which evolves from the contracting to the expanding phase in a smooth way, without developing instabilities or pathologies and remaining in the regime of validity of 4d effective field theory. A nearly scale invariant spectrum of perturbations is generated during the contracting phase by an isocurvature scalar with a negative exponential potential and then converted to adiabatic. The model predicts a slightly blue spectrum, n_S >~ 1, no observable gravitational waves and a high (but model dependent) level of non-Gaussianities with local shape. The model represents an explicit and predictive alternative to inflation, although, at present, it is clearly less compelling.Comment: 20 pages, 1 fig. v2: references added, JCAP published versio

    Cosmology without inflation

    Full text link
    We propose a new cosmological paradigm in which our observed expanding phase is originated from an initially large contracting Universe that subsequently experienced a bounce. This category of models, being geodesically complete, is non-singular and horizon-free, and can be made to prevent any relevant scale to ever have been smaller than the Planck length. In this scenario, one can find new ways to solve the standard cosmological puzzles. One can also obtain scale invariant spectra for both scalar and tensor perturbations: this will be the case, for instance, if the contracting Universe is dust-dominated at the time at which large wavelength perturbations get larger than the curvature scale. We present a particular example based on a dust fluid classically contracting model, where a bounce occurs due to quantum effects, in which these features are explicit.Comment: 8 pages, no figur

    On the Generation of a Scale-Invariant Spectrum of Adiabatic Fluctuations in Cosmological Models with a Contracting Phase

    Get PDF
    In Pre-Big-Bang and in Ekpyrotic Cosmology, perturbations on cosmological scales today are generated from quantum vacuum fluctuations during a phase when the Universe is contracting (viewed in the Einstein frame). The backgrounds studied to date do not yield a scale invariant spectrum of adiabatic fluctuations. Here, we present a new contracting background model (neither of Pre-Big-Bang nor of the Ekpyrotic form) involving a single scalar field coupled to gravity in which a scale-invariant spectrum of curvature fluctuations and gravitational waves results. The equation of state of this scalar field corresponds to cold matter. We demonstrate that if this contracting phase can be matched via a nonsingular bounce to an expanding Friedmann cosmology, the scale-invariance of the curvature fluctuations is maintained. We also find new background solutions for Pre-Big-Bang and for Ekpyrotic cosmology, which involve two scalar fields with exponential potentials with background values which are evolving in time. We comment on the difficulty of obtaining a scale-invariant spectrum of adiabatic fluctuations with background solutions which have been studied in the past.Comment: 8 pages, revised version without the section on perturbations, matching the version published on Phys. Rev. D. For cosmological perturbations in the two field model see astro-ph/021127

    The matter-ekpyrotic bounce scenario in Loop Quantum Cosmology

    Get PDF
    We will perform a detailed study of the matter-ekpyrotic bouncing scenario in Loop Quantum Cosmology using the methods of the dynamical systems theory. We will show that when the background is driven by a single scalar field, at very late times, in the contracting phase, all orbits depict a matter dominated Universe, which evolves to an ekpyrotic phase. After the bounce the Universe enters in the expanding phase, where the orbits leave the ekpyrotic regime going to a kination (also named deflationary) regime. Moreover, this scenario supports the production of heavy massive particles conformally coupled with gravity, which reheats the universe at temperatures compatible with the nucleosynthesis bounds and also the production of massless particles non-conformally coupled with gravity leading to very high reheating temperatures but ensuring the nucleosynthesis success. Dealing with cosmological perturbations, these background dynamics produce a nearly scale invariant power spectrum for the modes that leave the Hubble radius, in the contracting phase, when the Universe is quasi-matter dominated, whose spectral index and corresponding running is compatible with the recent experimental data obtained by PLANCK's team.Comment: 39 pages, 19 figures. Version accepted for publication in JCA

    Suppressing CMB Quadrupole with a Bounce from Contracting Phase to Inflation

    Full text link
    Recent released WMAP data show a low value of quadrupole in the CMB temperature fluctuations, which confirms the early observations by COBE. In this paper, a scenario, in which a contracting phase is followed by an inflationary phase, is constructed. We calculate the perturbation spectrum and show that this scenario can provide a reasonable explanation for lower CMB anisotropies on large angular scales.Comment: 5 pages, 3 figure

    Bouncing Loop Quantum Cosmology from F(T)F(T) gravity

    Get PDF
    The big bang singularity could be understood as a breakdown of Einstein's General Relativity at very high energies. Adopting this viewpoint, other theories, that implement Einstein Cosmology at high energies, might solve the problem of the primeval singularity. One of them is Loop Quantum Cosmology (LQC) with a small cosmological constant that models a universe moving along an ellipse, which prevents singularities like the big bang or the big rip, in the phase space (H,ρ)(H,\rho), where HH is the Hubble parameter and ρ\rho the energy density of the universe. Using LQC when one considers a model of universe filled by radiation and matter where, due to the cosmological constant, there are a de Sitter and an anti de Sitter solution. This means that one obtains a bouncing non-singular universe which is in the contracting phase at early times. After leaving this phase, i.e., after bouncing, it passes trough a radiation and matter dominated phase and finally at late times it expands in an accelerated way (current cosmic acceleration). This model does not suffer from the horizon and flatness problems as in big bang cosmology, where a period of inflation that increases the size of our universe in more than 60 e-folds is needed in order to solve both problems. The model has two mechanisms to avoid these problems: The evolution of the universe through a contracting phase and a period of super-inflation (H˙>0\dot{H}> 0)
    corecore